171 lines
7.0 KiB
Python
171 lines
7.0 KiB
Python
import numpy as np
|
|
|
|
#importing pressure conversion function
|
|
import sys
|
|
import os
|
|
current = os.path.dirname(os.path.realpath(__file__))
|
|
parent = os.path.dirname(current)
|
|
sys.path.append(parent)
|
|
from functions.pressure_conversion import pressure_conversion
|
|
|
|
|
|
class Druckrohrleitung_class:
|
|
# units
|
|
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
|
|
angle_unit = '°'
|
|
area_unit = r'$\mathrm{m}^2$'
|
|
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
|
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
|
length_unit = 'm'
|
|
pressure_unit = 'Pa'
|
|
time_unit = 's'
|
|
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
|
|
volume_unit = r'$\mathrm{m}^3$'
|
|
|
|
|
|
# init
|
|
def __init__(self,total_length,diameter,number_segments,pipeline_angle,Darcy_friction_factor,rho=1000,g=9.81):
|
|
self.length = total_length
|
|
self.dia = diameter
|
|
self.n_seg = number_segments
|
|
self.angle = pipeline_angle
|
|
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
|
|
self.density = 1000
|
|
self.g = g
|
|
|
|
self.dx = total_length/number_segments
|
|
self.l_vec = np.arange(0,(number_segments+1)*self.dx,self.dx)
|
|
|
|
# workaround for try-except construct in set_number_of_timesteps
|
|
self.c = 0
|
|
|
|
# setter
|
|
def set_pressure_propagation_velocity(self,c):
|
|
self.c = c
|
|
self.dt = self.dx/c
|
|
|
|
def set_number_of_timesteps(self,number_timesteps):
|
|
self.nt = number_timesteps
|
|
if self.c == 0:
|
|
raise Exception('Please set the pressure propagation velocity before setting the number of timesteps.')
|
|
else:
|
|
self.t_vec = np.arange(0,self.nt*self.dt,self.dt)
|
|
|
|
def set_initial_pressure(self,pressure,input_unit = 'Pa'):
|
|
p,_ = pressure_conversion(pressure,input_unit,target_unit=self.pressure_unit)
|
|
if np.size(p) == 1:
|
|
self.p0 = np.full_like(self.l_vec,p)
|
|
elif np.size(p) == np.size(self.l_vec):
|
|
self.p0 = p
|
|
else:
|
|
raise Exception('Unable to assign initial pressure. Input has to be of size 1 or' + np.size(self.l_vec))
|
|
|
|
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
|
|
self.p_old = self.p0.copy()
|
|
self.p_new = np.empty_like(self.p_old)
|
|
|
|
def set_initial_flow_velocity(self,velocity):
|
|
if np.size(velocity) == 1:
|
|
self.v0 = np.full_like(self.l_vec,velocity)
|
|
elif np.size(velocity) == np.size(self.l_vec):
|
|
self.v0 = velocity
|
|
else:
|
|
raise Exception('Unable to assign initial velocity. Input has to be of size 1 or' + np.size(self.l_vec))
|
|
|
|
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
|
|
self.v_old = self.v0.copy()
|
|
self.v_new = np.empty_like(self.v_old)
|
|
|
|
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine,input_unit_pressure = 'Pa'):
|
|
rho = self.density
|
|
c = self.c
|
|
f_D = self.f_D
|
|
dt = self.dt
|
|
D = self.dia
|
|
p_old = self.p_old[-2] # @ second to last node (the one before the turbine)
|
|
v_old = self.v_old[-2] # @ second to last node (the one before the turbine)
|
|
self.v_boundary_res = v_reservoir
|
|
self.v_boundary_tur = v_turbine
|
|
self.p_boundary_res,_ = pressure_conversion(p_reservoir,input_unit_pressure,target_unit=self.pressure_unit)
|
|
self.p_boundary_tur = p_old+rho*c*v_old-rho*c*f_D*dt/(2*D)*abs(v_old)*v_old
|
|
self.v_new[0] = self.v_boundary_res.copy()
|
|
self.v_new[-1] = self.v_boundary_tur.copy()
|
|
self.p_new[0] = self.p_boundary_res.copy()
|
|
self.p_new[-1] = self.p_boundary_tur.copy()
|
|
|
|
# getter
|
|
def get_pipeline_geometry(self):
|
|
print('The total length of the pipeline is', '\n', \
|
|
self.length, self.length_unit, '\n', \
|
|
'The diameter of the pipeline is', '\n', \
|
|
self.dia, self.length_unit, '\n', \
|
|
'The pipeline is divided into', self.n_seg , 'segments of length', '\n', \
|
|
round(self.dx,1), self.length_unit, '\n', \
|
|
'The pipeline has an inclination angle of', '\n', \
|
|
self.angle, self.angle_unit)
|
|
|
|
def get_other_pipeline_info(self):
|
|
print('The Darcy-friction factor of the pipeline is', '\n', \
|
|
self.f_D, '\n', \
|
|
'The pipeline is filled with a liquid with density', '\n', \
|
|
self.density, self.density_unit, '\n', \
|
|
'The gravitational acceleration is set to', '\n', \
|
|
self.g, self.acceleration_unit)
|
|
|
|
def get_pressure_propagation_velocity(self):
|
|
print('The pressure propagation velocity in the pipeline is', '\n', \
|
|
self.c, self.velocity_unit)
|
|
|
|
def get_number_of_timesteps(self):
|
|
print(self.nt, 'timesteps are performed in the simulation')
|
|
|
|
|
|
def get_initial_pressure(self,target_unit='bar'):
|
|
print('The inital pressure distribution in is', '\n', \
|
|
pressure_conversion(self.p0,self.pressure_unit,target_unit))
|
|
|
|
def get_initial_flow_velocity(self):
|
|
print('The inital velocity distribution is', '\n', \
|
|
self.v0, self.velocity_unit)
|
|
|
|
def get_boundary_conditions_next_timestep(self,target_unit_pressure ='bar'):
|
|
print('The pressure at the reservoir for the next timestep is', '\n', \
|
|
pressure_conversion(self.p_boundary_res,self.pressure_unit,target_unit_pressure), '\n', \
|
|
'The velocity at the reservoir for the next timestep is', '\n', \
|
|
self.v_boundary_res, self.velocity_unit, '\n', \
|
|
'The pressure at the turbine for the next timestep is', '\n', \
|
|
pressure_conversion(self.p_boundary_tur,self.pressure_unit,target_unit_pressure), '\n', \
|
|
'The velocity at the turbine for the next timestep is', '\n', \
|
|
self.v_boundary_tur, self.velocity_unit)
|
|
|
|
|
|
def timestep_characteristic_method(self):
|
|
#number of nodes
|
|
nn = self.n_seg+1
|
|
rho = self.density
|
|
c = self.c
|
|
f_D = self.f_D
|
|
dt = self.dt
|
|
D = self.dia
|
|
|
|
for i in range(1,nn-1):
|
|
self.v_new[i] = 0.5*(self.v_old[i-1]+self.v_old[i+1])+0.5/(rho*c)*(self.p_old[i-1]-self.p_old[i+1]) \
|
|
-f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]+abs(self.v_old[i+1])*self.v_old[i+1])
|
|
|
|
self.p_new[i] = 0.5*rho*c*(self.v_old[i-1]-self.v_old[i+1])+0.5*(self.p_old[i-1]+self.p_old[i+1]) \
|
|
-rho*c*f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]-abs(self.v_old[i+1])*self.v_old[i+1])
|
|
|
|
self.p_old = self.p_new.copy()
|
|
self.v_old = self.v_new.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|