Files
Python-DT_Slot_3/Ausgleichsbecken/Ausgleichsbecken_class_file.py
2022-07-06 10:29:22 +02:00

123 lines
5.2 KiB
Python

import numpy as np
# from Ausgleichsbecken_functions import FODE_function, get_h_halfstep, get_p_halfstep
#importing pressure conversion function
import sys
import os
current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current)
sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
def FODE_function(x, h, alpha, p, rho=1000., g=9.81):
f = x*abs(x)/h*alpha+g-p/(rho*h)
return f
class Ausgleichsbecken_class:
# units
# make sure that units and print units are the same
# units are used to label graphs and print units are used to have a bearable format when using pythons print()
area_unit = r'$\mathrm{m}^2$'
area_outflux_unit = r'$\mathrm{m}^2$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
level_unit = 'm'
pressure_unit = 'Pa'
time_unit = 's'
volume_unit = r'$\mathrm{m}^3$'
area_unit_print = ''
area_outflux_unit_print = ''
flux_unit_print = 'm³/s'
level_unit_print = 'm'
pressure_unit_print = 'Pa'
time_unit_print = 's'
volume_unit_print = ''
# init
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1):
self.area = area # base area of the rectangular structure
self.area_outflux = outflux_area # area of the outlet towards the pipeline
self.level_min = level_min # lowest allowed water level
self.level_max = level_max # highest allowed water level
self.timestep = timestep # timestep of the simulation
# initialize for get_info
self.level = "--"
self.influx = "--"
self.outflux = "--"
self.volume = "--"
# setter
def set_volume(self):
self.volume = self.level*self.area
def set_initial_level(self,initial_level):
self.level = initial_level
self.set_volume()
def set_influx(self,influx):
self.influx = influx
def set_outflux(self,outflux):
self.outflux = outflux
# getter
def get_info(self, full = False):
new_line = '\n'
if full == True:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
f"----------------------------- {new_line}"
f"Base area = {self.area:<10} {self.area_unit_print} {new_line}"
f"Outflux area = {round(self.area_outflux,3):<10} {self.area_outflux_unit_print} {new_line}"
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
f"Critical level low = {self.level_min:<10} {self.level_unit_print} {new_line}"
f"Critical level high = {self.level_max:<10} {self.level_unit_print} {new_line}"
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
f"----------------------------- {new_line}")
else:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The current attributes are: {new_line}"
f"----------------------------- {new_line}"
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
f"----------------------------- {new_line}")
print(print_str)
# methods
def update_level(self,timestep):
net_flux = self.influx-self.outflux
delta_V = net_flux*timestep
new_level = (self.volume+delta_V)/self.area
return new_level
def e_RK_4(self):
yn = self.outflux/self.area_outflux
h = self.level
dt = self.timestep
p,_ = pressure_conversion(self.pressure,self.pressure_unit,'Pa')
# update to include p_halfstep
p_hs,_ = pressure_conversion(self.pressure,self.pressure_unit,'Pa')
alpha = (self.area_outflux/self.area-1)
h_hs = self.update_level(dt/2)
Y1 = yn
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, self.pressure)
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
self.outflux = ynp1*self.area_outflux