171 lines
7.9 KiB
Python
171 lines
7.9 KiB
Python
import numpy as np
|
|
|
|
#importing pressure conversion function
|
|
import sys
|
|
import os
|
|
current = os.path.dirname(os.path.realpath(__file__))
|
|
parent = os.path.dirname(current)
|
|
sys.path.append(parent)
|
|
from functions.pressure_conversion import pressure_conversion
|
|
|
|
|
|
|
|
|
|
class Druckrohrleitung_class:
|
|
# units
|
|
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
|
|
angle_unit = 'rad'
|
|
area_unit = r'$\mathrm{m}^2$'
|
|
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
|
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
|
length_unit = 'm'
|
|
pressure_unit = 'Pa'
|
|
time_unit = 's'
|
|
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
|
|
volume_unit = r'$\mathrm{m}^3$'
|
|
|
|
acceleration_unit_print = 'm/s²'
|
|
angle_unit_print = 'rad'
|
|
area_unit_print = 'm²'
|
|
density_unit_print = 'kg/m³'
|
|
flux_unit_print = 'm³/s'
|
|
length_unit_print = 'm'
|
|
pressure_unit_print = 'Pa'
|
|
time_unit_print = 's'
|
|
velocity_unit_print = 'm/s' # for flux and pressure propagation
|
|
volume_unit_print = 'm³'
|
|
|
|
|
|
# init
|
|
def __init__(self,total_length,diameter,number_segments,pipeline_angle,Darcy_friction_factor,rho=1000,g=9.81):
|
|
self.length = total_length
|
|
self.dia = diameter
|
|
self.n_seg = number_segments
|
|
self.angle = pipeline_angle
|
|
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
|
|
self.density = 1000
|
|
self.g = g
|
|
|
|
self.dx = total_length/number_segments
|
|
self.l_vec = np.arange(0,(number_segments+1)*self.dx,self.dx)
|
|
|
|
# initialize for get_info method
|
|
self.c = '--'
|
|
self.dt = '--'
|
|
|
|
# setter
|
|
def set_pressure_propagation_velocity(self,c):
|
|
self.c = c
|
|
self.dt = self.dx/c
|
|
|
|
def set_number_of_timesteps(self,number_timesteps):
|
|
self.nt = number_timesteps
|
|
if self.c == '--':
|
|
raise Exception('Please set the pressure propagation velocity before setting the number of timesteps.')
|
|
else:
|
|
self.t_vec = np.arange(0,self.nt*self.dt,self.dt)
|
|
|
|
def set_initial_pressure(self,pressure,input_unit = 'Pa'):
|
|
p,_ = pressure_conversion(pressure,input_unit,target_unit=self.pressure_unit)
|
|
if np.size(p) == 1:
|
|
self.p0 = np.full_like(self.l_vec,p)
|
|
elif np.size(p) == np.size(self.l_vec):
|
|
self.p0 = p
|
|
else:
|
|
raise Exception('Unable to assign initial pressure. Input has to be of size 1 or' + np.size(self.l_vec))
|
|
|
|
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
|
|
self.p_old = self.p0.copy()
|
|
self.p = np.empty_like(self.p_old)
|
|
|
|
def set_initial_flow_velocity(self,velocity):
|
|
if np.size(velocity) == 1:
|
|
self.v0 = np.full_like(self.l_vec,velocity)
|
|
elif np.size(velocity) == np.size(self.l_vec):
|
|
self.v0 = velocity
|
|
else:
|
|
raise Exception('Unable to assign initial velocity. Input has to be of size 1 or' + np.size(self.l_vec))
|
|
|
|
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
|
|
self.v_old = self.v0.copy()
|
|
self.v = np.empty_like(self.v_old)
|
|
|
|
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine,input_unit_pressure = 'Pa'):
|
|
rho = self.density
|
|
c = self.c
|
|
f_D = self.f_D
|
|
dt = self.dt
|
|
D = self.dia
|
|
g = self.g
|
|
alpha = self.angle
|
|
p_old = self.p_old[-2] # @ second to last node (the one before the turbine)
|
|
v_old = self.v_old[-2] # @ second to last node (the one before the turbine)
|
|
self.v_boundary_res = v_reservoir # at new timestep
|
|
self.v_boundary_tur = v_turbine # at new timestep
|
|
self.p_boundary_res,_ = pressure_conversion(p_reservoir,input_unit_pressure,target_unit=self.pressure_unit)
|
|
self.p_boundary_tur = p_old-rho*c*(v_turbine-v_old)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v_old)*v_old
|
|
self.v[0] = self.v_boundary_res.copy()
|
|
self.v[-1] = self.v_boundary_tur.copy()
|
|
self.p[0] = self.p_boundary_res.copy()
|
|
self.p[-1] = self.p_boundary_tur.copy()
|
|
|
|
# getter
|
|
def get_info(self):
|
|
new_line = '\n'
|
|
angle_deg = round(self.angle/np.pi*180,3)
|
|
|
|
|
|
# :<10 pads the self.value to be 10 characters wide
|
|
print_str = (f"The pipeline has the following attributes: {new_line}"
|
|
f"----------------------------- {new_line}"
|
|
f"Length = {self.length:<10} {self.length_unit_print} {new_line}"
|
|
f"Diameter = {self.dia:<10} {self.length_unit_print} {new_line}"
|
|
f"Number of segments = {self.n_seg:<10} {new_line}"
|
|
f"Number of nodes = {self.n_seg+1:<10} {new_line}"
|
|
f"Length per segments = {self.dx:<10} {self.length_unit_print} {new_line}"
|
|
f"Pipeline angle = {round(self.angle,3):<10} {self.angle_unit_print} {new_line}"
|
|
f"Pipeline angle = {angle_deg}° {new_line}"
|
|
f"Darcy friction factor = {self.f_D:<10} {new_line}"
|
|
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
|
|
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_print} {new_line}"
|
|
f"Simulation timestep = {self.dt:<10} {self.time_unit_print} {new_line}"
|
|
f"Number of timesteps = {self.nt:<10} {new_line}"
|
|
f"Total simulation time = {self.nt*self.dt:<10} {self.time_unit_print} {new_line}"
|
|
f"----------------------------- {new_line}"
|
|
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
|
|
|
|
print(print_str)
|
|
|
|
|
|
def get_boundary_conditions_next_timestep(self,target_unit_pressure ='bar'):
|
|
print('The pressure at the reservoir for the next timestep is', '\n', \
|
|
pressure_conversion(self.p_boundary_res,self.pressure_unit_print,target_unit_pressure), '\n', \
|
|
'The velocity at the reservoir for the next timestep is', '\n', \
|
|
self.v_boundary_res, self.velocity_unit, '\n', \
|
|
'The pressure at the turbine for the next timestep is', '\n', \
|
|
pressure_conversion(self.p_boundary_tur,self.pressure_unit_print,target_unit_pressure), '\n', \
|
|
'The velocity at the turbine for the next timestep is', '\n', \
|
|
self.v_boundary_tur, self.velocity_unit)
|
|
|
|
|
|
def timestep_characteristic_method(self):
|
|
#number of nodes
|
|
nn = self.n_seg+1
|
|
rho = self.density
|
|
c = self.c
|
|
f_D = self.f_D
|
|
dt = self.dt
|
|
D = self.dia
|
|
g = self.g
|
|
alpha = self.angle
|
|
|
|
for i in range(1,nn-1):
|
|
self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \
|
|
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1])
|
|
|
|
self.p[i] = 0.5*(self.p_old[i+1]+self.p_old[i-1]) - 0.5*rho*c*(self.v_old[i+1]-self.v_old[i-1]) \
|
|
+f_D*rho*c*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]-abs(self.v_old[i-1])*self.v_old[i-1])
|
|
|
|
self.p_old = self.p.copy()
|
|
self.v_old = self.v.copy()
|