270 lines
13 KiB
Python
270 lines
13 KiB
Python
from logging import exception
|
|
import numpy as np
|
|
|
|
#importing pressure conversion function
|
|
import sys
|
|
import os
|
|
current = os.path.dirname(os.path.realpath(__file__))
|
|
parent = os.path.dirname(current)
|
|
sys.path.append(parent)
|
|
from functions.pressure_conversion import pressure_conversion
|
|
|
|
def FODE_function(x_out,h,A,A_a,p,rho,g):
|
|
# (FODE ... first order differential equation)
|
|
# based on the outflux formula by Andreas Malcherek
|
|
# https://www.youtube.com/watch?v=8HO2LwqOhqQ
|
|
# adapted for a pressurized pipeline into which the reservoir effuses
|
|
# and flow direction
|
|
# x_out ... effusion velocity
|
|
# h ... level in the reservoir
|
|
# A_a ... Area_outflux
|
|
# A ... Area_reservoir_base
|
|
# g ... gravitational acceleration
|
|
# rho ... density of the liquid in the reservoir
|
|
f = x_out*abs(x_out)/h*(A_a/A-1.)+g-p/(rho*h)
|
|
return f
|
|
|
|
|
|
class Ausgleichsbecken_class:
|
|
# units
|
|
# make sure that units and display units are the same
|
|
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
|
|
area_unit = r'$\mathrm{m}^2$'
|
|
area_outflux_unit = r'$\mathrm{m}^2$'
|
|
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
|
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
|
level_unit = 'm'
|
|
pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion
|
|
time_unit = 's'
|
|
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
|
|
volume_unit = r'$\mathrm{m}^3$'
|
|
|
|
area_unit_disp = 'm²'
|
|
area_outflux_unit_disp = 'm²'
|
|
density_unit_disp = 'kg/m³'
|
|
flux_unit_disp = 'm³/s'
|
|
level_unit_disp = 'm'
|
|
# pressure_unit_disp will be set within the __init__() method
|
|
time_unit_disp = 's'
|
|
velocity_unit_disp = 'm/s'
|
|
volume_unit_disp = 'm³'
|
|
|
|
g = 9.81 # m/s² gravitational acceleration
|
|
|
|
|
|
# init
|
|
def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.):
|
|
"""
|
|
Creates a reservoir with given attributes in this order: \n
|
|
Base Area [m²] \n
|
|
Outflux Area [m²] \n
|
|
Simulation timestep [s] \n
|
|
Pressure unit for displaying [string] \n
|
|
Minimal level [m] \n
|
|
Maximal level [m] \n
|
|
Density of the liquid [kg/m³] \n
|
|
"""
|
|
#set initial attributes
|
|
self.area = area # base area of the cuboid reservoir
|
|
self.area_out = area_outflux # area of the outlet towards the pipeline
|
|
self.density = rho # density of the liquid in the system
|
|
self.level_min = level_min # lowest allowed water level - warning yet to be implemented
|
|
self.level_max = level_max # highest allowed water level - warning yet to be implemented
|
|
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
|
|
self.timestep = timestep # timestep in the time evolution method
|
|
|
|
# initialize for get_info() (if get_info() gets called before set_steady_state() is executed)
|
|
self.influx = -np.inf
|
|
self.outflux = -np.inf
|
|
self.level = -np.inf
|
|
self.pressure = -np.inf
|
|
self.volume = -np.inf
|
|
|
|
|
|
# setter - set attributes
|
|
def set_initial_level(self,initial_level):
|
|
# sets the initial level in the reservoir and should only be called during initialization
|
|
if self.level == -np.inf:
|
|
self.level = initial_level
|
|
self.update_volume(set_flag=True)
|
|
else:
|
|
raise Exception('Initial level was already set once. Use the .update_level(self,timestep,set_flag=True) method to update level based on net flux.')
|
|
|
|
def set_initial_pressure(self,initial_pressure):
|
|
# sets the initial static pressure present at the outlet of the reservoir and should only be called during initialization
|
|
if self.pressure == -np.inf:
|
|
self.pressure = initial_pressure
|
|
else:
|
|
raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based current level.')
|
|
|
|
def set_influx(self,influx):
|
|
# sets influx to the reservoir in m³/s
|
|
# positive influx means that liquid flows into the reservoir
|
|
self.influx = influx
|
|
|
|
def set_outflux(self,outflux,display_warning=True):
|
|
# sets outflux to the reservoir in m³/s
|
|
# positive outflux means that liquid flows out of reservoir the reservoir
|
|
if display_warning == True:
|
|
print('You are setting the outflux from the reservoir manually. \n \
|
|
This is not an intended use of this method. \n \
|
|
Refer to the timestep_reservoir_evolution() or set_steady_state() method instead.')
|
|
self.outflux = outflux
|
|
|
|
def set_level(self,level,display_warning=True):
|
|
# sets level in the reservoir in m
|
|
if display_warning == True:
|
|
print('You are setting the level of the reservoir manually. \n \
|
|
This is not an intended use of this method. \n \
|
|
Refer to the update_level() or set_steady_state() method instead.')
|
|
self.level = level
|
|
|
|
def set_pressure(self,pressure,display_warning=True):
|
|
# sets pressure in the pipeline just below the reservoir in Pa
|
|
if display_warning == True:
|
|
print('You are setting the pressure below the reservoir manually. \n \
|
|
This is not an intended use of this method. \n \
|
|
Refer to the update_pressure() or set_steady_state() method instead.')
|
|
self.pressure = pressure
|
|
|
|
def set_volume(self,volume,display_warning=True):
|
|
# sets volume in reservoir
|
|
if display_warning == True:
|
|
print('You are setting the volume in the reservoir manually. \n \
|
|
This is not an intended use of this method. \n \
|
|
Refer to the .update_volume() or set_initial_level() or set_steady_state() method instead.')
|
|
self.volume = volume
|
|
|
|
def set_steady_state(self,ss_influx,ss_level):
|
|
# set the reservoir to steady state (ss) condition in which the net flux is zero
|
|
# set pressure acting on the outflux area so that the level stays constant
|
|
ss_outflux = ss_influx
|
|
ss_influx_vel = abs(ss_influx/self.area)
|
|
ss_outflux_vel = abs(ss_outflux/self.area_out)
|
|
# see confluence doc for explaination on how to arrive at the ss pressure formula
|
|
ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel)
|
|
|
|
# use setter methods to set the attributes to their steady state values
|
|
self.set_influx(ss_influx)
|
|
self.set_initial_level(ss_level)
|
|
self.set_initial_pressure(ss_pressure)
|
|
self.set_outflux(ss_outflux,display_warning=False)
|
|
|
|
# getter - return attributes
|
|
def get_info(self, full = False):
|
|
# prints out the info on the current state of the reservoir
|
|
new_line = '\n'
|
|
if self.pressure != np.inf:
|
|
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp)
|
|
if self.outflux != np.inf:
|
|
outflux_vel = self.outflux/self.area_out
|
|
|
|
if full == True:
|
|
# :<10 pads the self.value to be 10 characters wide
|
|
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
|
|
f"----------------------------- {new_line}"
|
|
f"Base area = {self.area:<10} {self.area_unit_disp} {new_line}"
|
|
f"Outflux area = {round(self.area_out,3):<10} {self.area_outflux_unit_disp} {new_line}"
|
|
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
|
|
f"Critical level low = {self.level_min:<10} {self.level_unit_disp} {new_line}"
|
|
f"Critical level high = {self.level_max:<10} {self.level_unit_disp} {new_line}"
|
|
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_disp} {new_line}"
|
|
f"Current influx = {round(self.influx,3):<10} {self.flux_unit_disp} {new_line}"
|
|
f"Current outflux = {round(self.outflux,3):<10} {self.flux_unit_disp} {new_line}"
|
|
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
|
|
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
|
|
f"Simulation timestep = {self.timestep:<10} {self.time_unit_disp} {new_line}"
|
|
f"Density of liquid = {self.density:<10} {self.density_unit_disp} {new_line}"
|
|
f"----------------------------- {new_line}")
|
|
else:
|
|
# :<10 pads the self.value to be 10 characters wide
|
|
print_str = (f"The current attributes are: {new_line}"
|
|
f"----------------------------- {new_line}"
|
|
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
|
|
f"Current volume = {self.volume:<10} {self.volume_unit_disp} {new_line}"
|
|
f"Current influx = {round(self.influx,3):<10} {self.flux_unit_disp} {new_line}"
|
|
f"Current outflux = {round(self.outflux,3):<10} {self.flux_unit_disp} {new_line}"
|
|
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
|
|
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
|
|
f"----------------------------- {new_line}")
|
|
|
|
print(print_str)
|
|
|
|
def get_current_influx(self):
|
|
return self.influx
|
|
|
|
def get_current_outflux(self):
|
|
return self.outflux
|
|
|
|
def get_current_level(self):
|
|
return self.level
|
|
|
|
def get_current_pressure(self):
|
|
return self.pressure
|
|
|
|
def get_current_volume(self):
|
|
return self.volume
|
|
|
|
# update methods - update attributes based on some parameter
|
|
def update_level(self,timestep,set_flag=False):
|
|
# update level based on net flux and timestep by calculating the volume change in
|
|
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
|
|
net_flux = self.influx-self.outflux
|
|
delta_level = net_flux*timestep/self.area
|
|
level_new = (self.level+delta_level)
|
|
# set flag is necessary because update_level() is used to get a halfstep value in the time evoultion
|
|
if set_flag == True:
|
|
self.set_level(level_new,display_warning=False)
|
|
elif set_flag == False:
|
|
return level_new
|
|
|
|
def update_pressure(self,set_flag=False):
|
|
# update pressure based on level and flux velocities
|
|
# see confluence doc for explaination
|
|
influx_vel = abs(self.influx/self.area)
|
|
outflux_vel = abs(self.outflux/self.area_out)
|
|
p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel)
|
|
# set flag for consistency with update_level()
|
|
if set_flag ==True:
|
|
self.set_pressure(p_new,display_warning=False)
|
|
elif set_flag == False:
|
|
return p_new
|
|
|
|
def update_volume(self,set_flag=False):
|
|
volume_new = self.level*self.area
|
|
# set flag for consistency with update_level()
|
|
if set_flag == True:
|
|
self.set_volume(volume_new,display_warning=False)
|
|
elif set_flag == False:
|
|
return volume_new
|
|
|
|
#methods
|
|
def timestep_reservoir_evolution(self):
|
|
# update outflux, level, pressure and volume based on current pipeline pressure and waterlevel in reservoir
|
|
|
|
# get some variables
|
|
dt = self.timestep
|
|
rho = self.density
|
|
g = self.g
|
|
A = self.area
|
|
A_a = self.area_out
|
|
yn = self.outflux/A_a # outflux velocity
|
|
h = self.level
|
|
h_hs = self.update_level(dt/2)
|
|
p = self.pressure
|
|
p_hs = self.pressure + rho*g*(h_hs-h)
|
|
|
|
# perform explicit 4 step Runge Kutta
|
|
Y1 = yn
|
|
Y2 = yn + dt/2*FODE_function(Y1,h,A,A_a,p,rho,g)
|
|
Y3 = yn + dt/2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)
|
|
Y4 = yn + dt*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)
|
|
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
|
|
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
|
|
|
|
# set/update the attributes to their new values
|
|
self.set_outflux(ynp1*A_a,display_warning=False)
|
|
self.update_level(dt,set_flag=True)
|
|
self.update_volume(set_flag=True)
|
|
self.update_pressure(set_flag=True)
|