update HPP parameters to get a possible consistent config

This commit is contained in:
Brantegger Georg
2023-01-25 09:06:31 +01:00
parent 0a21d71fd5
commit 0aed181e8d

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
@@ -13,7 +13,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
@@ -36,20 +36,32 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 18,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.2\n",
"60.0\n"
]
}
],
"source": [
"i = 19\n",
"j = 6\n",
"i = 1\n",
"j = 2\n",
"\n",
"Kp_list = np.arange(0.1,2.1,0.1)\n",
"Area_list = np.arange(20.,160.,20.)"
"Area_list = np.arange(20.,160.,20.)\n",
"\n",
"print(Kp_list[i])\n",
"print(Area_list[j])"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
@@ -57,30 +69,31 @@
"\n",
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 1000. # [kg/m³] density of water \n",
"rho = 0.9982067*1e3 # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n",
"\n",
" # for KW OL \n",
"OL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T1_closingTime = 100. # [s] closing time of turbine\n",
"OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
"OL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T2_closingTime = 100. # [s] closing time of turbine\n",
" # simulation of \"Bacheinzug\"\n",
"OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_T2_closingTime = 600. # [s] closing time of turbine\n",
"\n",
" # for KW UL\n",
"UL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 160. # [s] closing time of turbine\n",
"UL_T1_Q_nenn = 1.8 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(48.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
"UL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 160. # [s] closing time of turbine\n",
"UL_T2_Q_nenn = 1.8 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(48.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 2. # [m]\n",
"Con_targetLevel = 1.05 # [m]\n",
"Con_K_p = Kp_list[i] # [-] proportional constant of PI controller\n",
"Con_T_i = 200. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
@@ -89,7 +102,7 @@
"Pip_length = 2300. # [m] length of pipeline\n",
"Pip_dia = 1.0 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 35.6 # [m] hydraulic head of pipeline without reservoir\n",
"Pip_head = 68. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.015 # [-] Darcy friction factor\n",
@@ -104,24 +117,24 @@
" # for reservoir\n",
"Res_area_base = Area_list[j] # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
"Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n",
"Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n",
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"# flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn) # [m³/s] initial flux through whole system for steady state initialization \n",
"OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n",
"flux_init = 0. # [m³/s] initial flux through whole system for steady state initialization \n",
"# OL_LAs_init = [1.,1.] # [vec] initial guide vane openings of OL-KW\n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 2400. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
@@ -135,9 +148,9 @@
"KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n",
"\n",
"KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_T1_p_nenn)\n",
"KW_OL.set_steady_state_by_flux(flux_init,OL_T1_p_nenn*1.1)\n",
"\n",
"flux_init = KW_OL.get_current_Q()\n",
"# flux_init = KW_OL.get_current_Q()\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
@@ -164,7 +177,20 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# print(reservoir.get_info(full=True))\n",
"\n",
"# print(pipe.get_info())\n",
"# print(pipe.v)\n",
"# print(pipe.p)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
@@ -212,7 +238,7 @@
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = 1.\n",
"\n",
"\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n",
"OL_T2_LA_soll_vec = OL_T1_LA_soll_vec.copy() # storing the target value for the guide van opening\n",
"\n",
"\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
@@ -237,71 +263,71 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# %matplotlib qt5\n",
"# # displaying the guide vane openings\n",
"# fig0,axs0 = plt.subplots(1,1)\n",
"# axs0.set_title('LA')\n",
"# axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"# axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n",
"# axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"%matplotlib qt5\n",
"# displaying the guide vane openings\n",
"fig0,axs0 = plt.subplots(1,1)\n",
"axs0.set_title('LA')\n",
"axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n",
"axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n",
"# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs0.set_ylabel(r'$LA$ [%]')\n",
"# axs0.legend()\n",
"# plt.pause(2)"
"axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs0.set_ylabel(r'$LA$ [%]')\n",
"axs0.legend()\n",
"plt.pause(2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"# Time loop\n",
"\n",
"# # create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"# fig1,axs1 = plt.subplots(3,1)\n",
"# fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"# axs1[0].set_title('Pressure distribution in pipeline')\n",
"# axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')c\n",
"# axs1[0].set_ylim([-2,50])\n",
"# axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"# axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# axs1[1].set_ylim([-2,20])\n",
"# axs1[2].set_title('Flux distribution in pipeline')\n",
"# axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"# axs1[2].set_ylim([-1,10])\n",
"# lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"# lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"# lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"# lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"# lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"# lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"# lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"# lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"# lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[0].set_ylim([-2,80])\n",
"axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_ylim([-30,20])\n",
"axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"axs1[2].set_ylim([-1,10])\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"# # axs1[0].autoscale()\n",
"# # axs1[1].autoscale()\n",
"# axs1[0].autoscale()\n",
"# axs1[1].autoscale()\n",
"\n",
"# fig1.tight_layout()\n",
"# fig1.show()\n",
"# plt.pause(1)\n"
"fig1.tight_layout()\n",
"fig1.show()\n",
"plt.pause(1)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
@@ -360,165 +386,187 @@
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
" # # plot some stuff\n",
" # # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" # if it_pipe%50 == 0:\n",
" # lo_0.remove()\n",
" # lo_0min.remove()\n",
" # lo_0max.remove()\n",
" # lo_1.remove()\n",
" # lo_1min.remove()\n",
" # lo_1max.remove()\n",
" # lo_2.remove()\n",
" # lo_2min.remove()\n",
" # lo_2max.remove()\n",
" # # plot new pressure and velocity distribution in the pipeline\n",
" # lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" # lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" # lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" # lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" # lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" # lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" # lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" # lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" # lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" # fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" # fig1.canvas.draw()\n",
" # fig1.tight_layout()\n",
" # fig1.show()\n",
" # plt.pause(0.1) "
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%50 == 0:\n",
" lo_0.remove()\n",
" lo_0min.remove()\n",
" lo_0max.remove()\n",
" lo_1.remove()\n",
" lo_1min.remove()\n",
" lo_1max.remove()\n",
" lo_2.remove()\n",
" lo_2min.remove()\n",
" lo_2max.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw()\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.1) "
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Level and Volume reservoir')\n",
"# axs2.plot(t_vec,level_vec,label='level')\n",
"# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs2.set_ylabel(r'$h$ [m]')\n",
"# x_twin_00 = axs2.twinx()\n",
"# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"# x_twin_00.plot(t_vec,volume_vec)\n",
"# axs2.legend()\n",
"level_plot_min = 0\n",
"level_plot_max = 3\n",
"volume_plot_min = level_plot_min*Res_area_base\n",
"volume_plot_max = level_plot_max*Res_area_base\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('LA')\n",
"# axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"# axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"# axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"# axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"# axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs2.set_ylabel(r'$LA$ [%]')\n",
"# axs2.legend()\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"# axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"# axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# axs2.legend()\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Fluxes')\n",
"# axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"# axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"# axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"# axs2.legend()\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Pressure')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"# # fig2,axs2 = plt.subplots(1,1)\n",
"# # axs2.set_title('Min and Max Fluxes')\n",
"# # axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"# # axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"# # axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# # axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"\n",
"# fig2.tight_layout()\n",
"# plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n",
"axs3[0,0].set_title('Level and Volume reservoir')\n",
"axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"axs3[0,0].set_ylim(0,3.5)\n",
"x_twin_00 = axs3[0,0].twinx()\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
"axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_min',c='r')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$h$ [m]')\n",
"axs2.set_ylim(level_plot_min,level_plot_max)\n",
"x_twin_00 = axs2.twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(0,3.5*Res_area_base)\n",
"axs3[0,0].legend()\n",
"x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"axs2.legend()\n",
"\n",
"axs3[0,1].set_title('LA')\n",
"axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"axs3[0,1].legend()\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"axs3[1,0].set_title('Fluxes')\n",
"axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs3[1,0].legend()\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs3[1,1].legend()\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"fig3.tight_layout()\n",
"plt.show()\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n",
"fig3.savefig(figname)"
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Fluxes')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"print(level_vec[0]-np.min(level_vec))\n",
"print(level_vec[np.argmin(np.abs(t_vec-600))])\n",
"print(np.max(level_vec)-level_vec[0])"
"\n",
"# fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"# fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n",
"# axs3[0,0].set_title('Level and Volume reservoir')\n",
"# axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"# axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"# axs3[0,0].set_ylim(0,3.5)\n",
"# x_twin_00 = axs3[0,0].twinx()\n",
"# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"# x_twin_00.plot(t_vec,volume_vec)\n",
"# x_twin_00.set_ylim(0,3.5*Res_area_base)\n",
"# axs3[0,0].legend()\n",
"\n",
"# axs3[0,1].set_title('LA')\n",
"# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"# axs3[0,1].legend()\n",
"\n",
"# axs3[1,0].set_title('Fluxes')\n",
"# axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"# axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"# axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"# axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"# axs3[1,0].legend()\n",
"\n",
"# axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"# axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# axs3[1,1].legend()\n",
"\n",
"# fig3.tight_layout()\n",
"# plt.show()\n",
"\n",
"# figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n",
"# fig3.savefig(figname)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[4.08482919 4.08482935 4.08482952 4.08482968 4.08482985 4.08483001\n",
" 4.08483017 4.08483033 4.08483048 4.08483064 4.08483079 4.08483095\n",
" 4.0848311 4.08483125 4.0848314 4.08483154 4.08483169 4.08483183\n",
" 4.08483198 4.08483212 4.08483226 4.0848324 4.08483253 4.08483267\n",
" 4.0848328 4.08483293 4.08483306 4.08483319 4.08483332 4.08483345\n",
" 4.08483357 4.0848337 4.08483382 4.08483394 4.08483406 4.08483418\n",
" 4.0848343 4.08483441 4.08483452 4.08483464 4.08483475 4.08483486\n",
" 4.08483496 4.08483507 4.08483517 4.08483528 4.08483538 4.08483548\n",
" 4.08483558 4.08483568 4.08483577]\n"
]
}
],
"source": [
"print(pipe.v)"
]
}
],