code cleanup and commenting I
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
from logging import exception
|
||||
import numpy as np
|
||||
|
||||
#importing pressure conversion function
|
||||
@@ -8,8 +9,19 @@ parent = os.path.dirname(current)
|
||||
sys.path.append(parent)
|
||||
from functions.pressure_conversion import pressure_conversion
|
||||
|
||||
def FODE_function(x, h, alpha, p, rho=1000., g=9.81):
|
||||
f = x*abs(x)/h*alpha+g-p/(rho*h)
|
||||
def FODE_function(x,h,A,A_a,p,rho,g):
|
||||
# (FODE ... first order differential equation)
|
||||
# based on the outflux formula by Andreas Malcherek
|
||||
# https://www.youtube.com/watch?v=8HO2LwqOhqQ
|
||||
# adapted for a pressurized pipeline into which the reservoir effuses
|
||||
# and flow direction
|
||||
# x ... effusion velocity
|
||||
# h ... level in the reservoir
|
||||
# A_a ... Outflux_Area
|
||||
# A ... Reservoir_Area
|
||||
# g ... gravitational acceleration
|
||||
# rho ... density of the liquid in the reservoir
|
||||
f = x*abs(x)/h*(A_a/A-1)+g-p/(rho*h)
|
||||
return f
|
||||
|
||||
|
||||
@@ -19,67 +31,84 @@ class Ausgleichsbecken_class:
|
||||
# units are used to label graphs and print units are used to have a bearable format when using pythons print()
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
area_outflux_unit = r'$\mathrm{m}^2$'
|
||||
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
level_unit = 'm'
|
||||
pressure_unit = 'Pa'
|
||||
time_unit = 's'
|
||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
|
||||
area_unit_print = 'm²'
|
||||
area_outflux_unit_print = 'm²'
|
||||
density_unit_print = 'kg/m³'
|
||||
flux_unit_print = 'm³/s'
|
||||
level_unit_print = 'm'
|
||||
time_unit_print = 's'
|
||||
pressure_unit_print = '--' # will be set by .set_pressure() method
|
||||
velocity_unit_print = 'm/s'
|
||||
volume_unit_print = 'm³'
|
||||
|
||||
g = 9.81 # m/s²
|
||||
rho = 1000 # kg/m³
|
||||
g = 9.81 # m/s² gravitational acceleration
|
||||
|
||||
|
||||
# init
|
||||
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1):
|
||||
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1,rho = 1000):
|
||||
self.area = area # base area of the rectangular structure
|
||||
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
||||
self.density = rho # density of the liquid in the system
|
||||
self.level_min = level_min # lowest allowed water level
|
||||
self.level_max = level_max # highest allowed water level
|
||||
self.timestep = timestep # timestep of the simulation
|
||||
|
||||
# initialize for get_info
|
||||
self.level = "--"
|
||||
self.influx = "--"
|
||||
self.level = "--"
|
||||
self.outflux = "--"
|
||||
self.volume = "--"
|
||||
|
||||
|
||||
# setter
|
||||
def set_volume(self):
|
||||
def update_volume(self):
|
||||
# sets volume in reservoir based on self.level
|
||||
self.volume = self.level*self.area
|
||||
|
||||
def set_initial_level(self,initial_level):
|
||||
self.level = initial_level
|
||||
self.set_volume()
|
||||
# sets the level in the reservoir and should only be called during initialization
|
||||
if self.level == '--':
|
||||
self.level = initial_level
|
||||
self.update_volume()
|
||||
else:
|
||||
raise Exception('Initial level was already set once. Use the .update_level(self,timestep) method to update level based on net flux.')
|
||||
|
||||
def set_influx(self,influx):
|
||||
# sets influx to the reservoir in m³/s
|
||||
# positive influx means that liquid flows into the reservoir
|
||||
self.influx = influx
|
||||
|
||||
def set_outflux(self,outflux):
|
||||
self.outflux = outflux
|
||||
self.outflux_vel = outflux/self.area_outflux
|
||||
# sets outflux to the reservoir in m³/s
|
||||
# positive outflux means that liquid flows out of reservoir the reservoir
|
||||
self.outflux = outflux
|
||||
|
||||
def set_pressure(self,pressure,pressure_unit,display_pressure_unit):
|
||||
def set_pressure(self,pressure,display_pressure_unit):
|
||||
# sets the static pressure present at the outlet of the reservoir
|
||||
# units are used to convert and display the pressure
|
||||
self.pressure = pressure
|
||||
self.pressure_unit = pressure_unit
|
||||
self.pressure_unit_print = display_pressure_unit
|
||||
|
||||
def set_steady_state(self,ss_influx,ss_level,pressure_unit,display_pressure_unit):
|
||||
def set_steady_state(self,ss_influx,ss_level,display_pressure_unit):
|
||||
# find the steady state (ss) condition in which the net flux is zero
|
||||
# set pressure acting on the outflux so that the level stays constant
|
||||
ss_outflux = ss_influx
|
||||
ss_outflux_vel = ss_outflux/self.area_outflux
|
||||
ss_pressure = self.rho*self.g*ss_level-ss_outflux_vel**2*self.rho/2
|
||||
ss_pressure = self.density*self.g*ss_level-ss_outflux_vel**2*self.density/2
|
||||
|
||||
self.set_initial_level(ss_level)
|
||||
self.set_influx(ss_influx)
|
||||
self.set_outflux(ss_outflux)
|
||||
self.set_pressure(ss_pressure,pressure_unit,display_pressure_unit)
|
||||
self.set_pressure(ss_pressure,display_pressure_unit)
|
||||
|
||||
# getter
|
||||
def get_info(self, full = False):
|
||||
new_line = '\n'
|
||||
@@ -101,6 +130,7 @@ class Ausgleichsbecken_class:
|
||||
f"Current outflux vel = {round(self.outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
||||
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
|
||||
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
|
||||
f"----------------------------- {new_line}")
|
||||
else:
|
||||
# :<10 pads the self.value to be 10 characters wide
|
||||
@@ -116,9 +146,27 @@ class Ausgleichsbecken_class:
|
||||
|
||||
print(print_str)
|
||||
|
||||
def get_current_level(self):
|
||||
return self.level
|
||||
|
||||
def get_current_influx(self):
|
||||
return self.influx
|
||||
|
||||
def get_current_outflux(self):
|
||||
return self.outflux
|
||||
|
||||
def get_current_volume(self):
|
||||
return self.volume
|
||||
|
||||
def get_current_pressure(self):
|
||||
return self.pressure
|
||||
|
||||
|
||||
|
||||
# methods
|
||||
def update_level(self,timestep):
|
||||
# update level based on net flux and timestep by calculating the volume change in
|
||||
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
|
||||
net_flux = self.influx-self.outflux
|
||||
delta_V = net_flux*timestep
|
||||
new_level = (self.volume+delta_V)/self.area
|
||||
@@ -127,21 +175,25 @@ class Ausgleichsbecken_class:
|
||||
|
||||
def e_RK_4(self):
|
||||
# update outflux and outflux velocity based on current pipeline pressure and waterlevel in reservoir
|
||||
yn = self.outflux_vel
|
||||
yn = self.outflux/self.area_outflux # outflux velocity
|
||||
h = self.level
|
||||
dt = self.timestep
|
||||
p = self.pressure
|
||||
# assume constant pipeline pressure during timestep (see comments in main_programm)
|
||||
# assume constant pipeline pressure during timestep
|
||||
# e_RK_4 timestep is way smalle than timestep of characteristic method, so this should be a valid approx.
|
||||
# (furthermore I have no idea how to approximate p_hs otherwise :/ )
|
||||
p_hs = self.pressure
|
||||
alpha = (self.area_outflux/self.area-1)
|
||||
A_a = self.area_outflux
|
||||
A = self.area
|
||||
h_hs = self.update_level(dt/2)
|
||||
rho = self.density
|
||||
g = self.g
|
||||
# explicit 4 step Runge Kutta
|
||||
Y1 = yn
|
||||
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, self.pressure)
|
||||
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
|
||||
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
||||
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
||||
Y2 = yn + dt/2*FODE_function(Y1,h,A,A_a,self.pressure,rho,g)
|
||||
Y3 = yn + dt/2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)
|
||||
Y4 = yn + dt*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
|
||||
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
|
||||
|
||||
self.outflux_vel = ynp1
|
||||
self.outflux = ynp1*self.area_outflux
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -21,7 +21,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -46,7 +46,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -76,7 +76,7 @@
|
||||
" V.pressure = pressure_vec[i]\n",
|
||||
" V.e_RK_4()\n",
|
||||
" V.level = V.update_level(V.timestep)\n",
|
||||
" V.set_volume()\n",
|
||||
" V.update_volume()\n",
|
||||
" outflux_vec[i+1] = V.outflux\n",
|
||||
" level_vec[i+1] = V.level\n",
|
||||
" if V.level < total_min_level:\n",
|
||||
@@ -87,7 +87,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -141,7 +141,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.8.13 ('DT_Slot_3')",
|
||||
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -160,7 +160,7 @@
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48"
|
||||
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
@@ -32,7 +32,7 @@ def pa_to_atm(p):
|
||||
def pa_to_psi(p):
|
||||
return p/6894.8
|
||||
|
||||
def pressure_conversion(pressure, input_unit = 'bar', target_unit = 'Pa'):
|
||||
def pressure_conversion(pressure, input_unit = 'bar', target_unit = 'Pa', return_unit = False):
|
||||
p = pressure
|
||||
if input_unit.lower() == 'bar':
|
||||
p_pa = bar_to_pa(p)
|
||||
@@ -50,20 +50,27 @@ def pressure_conversion(pressure, input_unit = 'bar', target_unit = 'Pa'):
|
||||
raise Exception('Given input unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi')
|
||||
|
||||
if target_unit.lower() == 'bar':
|
||||
return pa_to_bar(p_pa), target_unit
|
||||
return_vec = [pa_to_bar(p_pa), target_unit]
|
||||
elif target_unit.lower() == 'mws':
|
||||
return pa_to_mWS(p_pa), target_unit
|
||||
return_vec = [pa_to_mWS(p_pa), target_unit]
|
||||
elif target_unit.lower() == 'torr':
|
||||
return pa_to_torr(p_pa), target_unit
|
||||
return_vec = [pa_to_torr(p_pa), target_unit]
|
||||
elif target_unit.lower() == 'atm':
|
||||
return pa_to_atm(p_pa), target_unit
|
||||
return_vec = [pa_to_atm(p_pa), target_unit]
|
||||
elif target_unit.lower() =='psi':
|
||||
return pa_to_psi(p_pa), target_unit
|
||||
return_vec = [pa_to_psi(p_pa), target_unit]
|
||||
elif target_unit.lower() == 'pa':
|
||||
return p_pa, target_unit
|
||||
return_vec = [p_pa, target_unit]
|
||||
else:
|
||||
raise Exception('Given target unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi')
|
||||
|
||||
if return_unit == True:
|
||||
# return with pressure unit
|
||||
return return_vec
|
||||
else:
|
||||
# return without pressure unit
|
||||
return return_vec[0]
|
||||
|
||||
# testing_pressure_conversion
|
||||
if __name__ == '__main__':
|
||||
p = 1
|
||||
@@ -72,6 +79,6 @@ if __name__ == '__main__':
|
||||
|
||||
for input_unit in unit_dict:
|
||||
for target_unit in unit_dict:
|
||||
converted_p = pressure_conversion(p,input_unit,target_unit)
|
||||
converted_p = pressure_conversion(p,input_unit,target_unit,return_unit=False)
|
||||
print(input_unit,target_unit)
|
||||
print(converted_p)
|
||||
Reference in New Issue
Block a user