code cleanup and commenting I
This commit is contained in:
@@ -1,3 +1,4 @@
|
|||||||
|
from logging import exception
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
#importing pressure conversion function
|
#importing pressure conversion function
|
||||||
@@ -8,8 +9,19 @@ parent = os.path.dirname(current)
|
|||||||
sys.path.append(parent)
|
sys.path.append(parent)
|
||||||
from functions.pressure_conversion import pressure_conversion
|
from functions.pressure_conversion import pressure_conversion
|
||||||
|
|
||||||
def FODE_function(x, h, alpha, p, rho=1000., g=9.81):
|
def FODE_function(x,h,A,A_a,p,rho,g):
|
||||||
f = x*abs(x)/h*alpha+g-p/(rho*h)
|
# (FODE ... first order differential equation)
|
||||||
|
# based on the outflux formula by Andreas Malcherek
|
||||||
|
# https://www.youtube.com/watch?v=8HO2LwqOhqQ
|
||||||
|
# adapted for a pressurized pipeline into which the reservoir effuses
|
||||||
|
# and flow direction
|
||||||
|
# x ... effusion velocity
|
||||||
|
# h ... level in the reservoir
|
||||||
|
# A_a ... Outflux_Area
|
||||||
|
# A ... Reservoir_Area
|
||||||
|
# g ... gravitational acceleration
|
||||||
|
# rho ... density of the liquid in the reservoir
|
||||||
|
f = x*abs(x)/h*(A_a/A-1)+g-p/(rho*h)
|
||||||
return f
|
return f
|
||||||
|
|
||||||
|
|
||||||
@@ -19,67 +31,84 @@ class Ausgleichsbecken_class:
|
|||||||
# units are used to label graphs and print units are used to have a bearable format when using pythons print()
|
# units are used to label graphs and print units are used to have a bearable format when using pythons print()
|
||||||
area_unit = r'$\mathrm{m}^2$'
|
area_unit = r'$\mathrm{m}^2$'
|
||||||
area_outflux_unit = r'$\mathrm{m}^2$'
|
area_outflux_unit = r'$\mathrm{m}^2$'
|
||||||
|
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||||
level_unit = 'm'
|
level_unit = 'm'
|
||||||
|
pressure_unit = 'Pa'
|
||||||
time_unit = 's'
|
time_unit = 's'
|
||||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
|
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
|
||||||
volume_unit = r'$\mathrm{m}^3$'
|
volume_unit = r'$\mathrm{m}^3$'
|
||||||
|
|
||||||
area_unit_print = 'm²'
|
area_unit_print = 'm²'
|
||||||
area_outflux_unit_print = 'm²'
|
area_outflux_unit_print = 'm²'
|
||||||
|
density_unit_print = 'kg/m³'
|
||||||
flux_unit_print = 'm³/s'
|
flux_unit_print = 'm³/s'
|
||||||
level_unit_print = 'm'
|
level_unit_print = 'm'
|
||||||
time_unit_print = 's'
|
time_unit_print = 's'
|
||||||
|
pressure_unit_print = '--' # will be set by .set_pressure() method
|
||||||
velocity_unit_print = 'm/s'
|
velocity_unit_print = 'm/s'
|
||||||
volume_unit_print = 'm³'
|
volume_unit_print = 'm³'
|
||||||
|
|
||||||
g = 9.81 # m/s²
|
g = 9.81 # m/s² gravitational acceleration
|
||||||
rho = 1000 # kg/m³
|
|
||||||
|
|
||||||
# init
|
# init
|
||||||
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1):
|
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1,rho = 1000):
|
||||||
self.area = area # base area of the rectangular structure
|
self.area = area # base area of the rectangular structure
|
||||||
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
||||||
|
self.density = rho # density of the liquid in the system
|
||||||
self.level_min = level_min # lowest allowed water level
|
self.level_min = level_min # lowest allowed water level
|
||||||
self.level_max = level_max # highest allowed water level
|
self.level_max = level_max # highest allowed water level
|
||||||
self.timestep = timestep # timestep of the simulation
|
self.timestep = timestep # timestep of the simulation
|
||||||
|
|
||||||
# initialize for get_info
|
# initialize for get_info
|
||||||
self.level = "--"
|
|
||||||
self.influx = "--"
|
self.influx = "--"
|
||||||
|
self.level = "--"
|
||||||
self.outflux = "--"
|
self.outflux = "--"
|
||||||
self.volume = "--"
|
self.volume = "--"
|
||||||
|
|
||||||
|
|
||||||
# setter
|
# setter
|
||||||
def set_volume(self):
|
def update_volume(self):
|
||||||
|
# sets volume in reservoir based on self.level
|
||||||
self.volume = self.level*self.area
|
self.volume = self.level*self.area
|
||||||
|
|
||||||
def set_initial_level(self,initial_level):
|
def set_initial_level(self,initial_level):
|
||||||
self.level = initial_level
|
# sets the level in the reservoir and should only be called during initialization
|
||||||
self.set_volume()
|
if self.level == '--':
|
||||||
|
self.level = initial_level
|
||||||
|
self.update_volume()
|
||||||
|
else:
|
||||||
|
raise Exception('Initial level was already set once. Use the .update_level(self,timestep) method to update level based on net flux.')
|
||||||
|
|
||||||
def set_influx(self,influx):
|
def set_influx(self,influx):
|
||||||
|
# sets influx to the reservoir in m³/s
|
||||||
|
# positive influx means that liquid flows into the reservoir
|
||||||
self.influx = influx
|
self.influx = influx
|
||||||
|
|
||||||
def set_outflux(self,outflux):
|
def set_outflux(self,outflux):
|
||||||
self.outflux = outflux
|
# sets outflux to the reservoir in m³/s
|
||||||
self.outflux_vel = outflux/self.area_outflux
|
# positive outflux means that liquid flows out of reservoir the reservoir
|
||||||
|
self.outflux = outflux
|
||||||
|
|
||||||
def set_pressure(self,pressure,pressure_unit,display_pressure_unit):
|
def set_pressure(self,pressure,display_pressure_unit):
|
||||||
|
# sets the static pressure present at the outlet of the reservoir
|
||||||
|
# units are used to convert and display the pressure
|
||||||
self.pressure = pressure
|
self.pressure = pressure
|
||||||
self.pressure_unit = pressure_unit
|
|
||||||
self.pressure_unit_print = display_pressure_unit
|
self.pressure_unit_print = display_pressure_unit
|
||||||
|
|
||||||
def set_steady_state(self,ss_influx,ss_level,pressure_unit,display_pressure_unit):
|
def set_steady_state(self,ss_influx,ss_level,display_pressure_unit):
|
||||||
|
# find the steady state (ss) condition in which the net flux is zero
|
||||||
|
# set pressure acting on the outflux so that the level stays constant
|
||||||
ss_outflux = ss_influx
|
ss_outflux = ss_influx
|
||||||
ss_outflux_vel = ss_outflux/self.area_outflux
|
ss_outflux_vel = ss_outflux/self.area_outflux
|
||||||
ss_pressure = self.rho*self.g*ss_level-ss_outflux_vel**2*self.rho/2
|
ss_pressure = self.density*self.g*ss_level-ss_outflux_vel**2*self.density/2
|
||||||
|
|
||||||
self.set_initial_level(ss_level)
|
self.set_initial_level(ss_level)
|
||||||
self.set_influx(ss_influx)
|
self.set_influx(ss_influx)
|
||||||
self.set_outflux(ss_outflux)
|
self.set_outflux(ss_outflux)
|
||||||
self.set_pressure(ss_pressure,pressure_unit,display_pressure_unit)
|
self.set_pressure(ss_pressure,display_pressure_unit)
|
||||||
|
|
||||||
# getter
|
# getter
|
||||||
def get_info(self, full = False):
|
def get_info(self, full = False):
|
||||||
new_line = '\n'
|
new_line = '\n'
|
||||||
@@ -101,6 +130,7 @@ class Ausgleichsbecken_class:
|
|||||||
f"Current outflux vel = {round(self.outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
f"Current outflux vel = {round(self.outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
||||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
||||||
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
|
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
|
||||||
|
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
|
||||||
f"----------------------------- {new_line}")
|
f"----------------------------- {new_line}")
|
||||||
else:
|
else:
|
||||||
# :<10 pads the self.value to be 10 characters wide
|
# :<10 pads the self.value to be 10 characters wide
|
||||||
@@ -116,9 +146,27 @@ class Ausgleichsbecken_class:
|
|||||||
|
|
||||||
print(print_str)
|
print(print_str)
|
||||||
|
|
||||||
|
def get_current_level(self):
|
||||||
|
return self.level
|
||||||
|
|
||||||
|
def get_current_influx(self):
|
||||||
|
return self.influx
|
||||||
|
|
||||||
|
def get_current_outflux(self):
|
||||||
|
return self.outflux
|
||||||
|
|
||||||
|
def get_current_volume(self):
|
||||||
|
return self.volume
|
||||||
|
|
||||||
|
def get_current_pressure(self):
|
||||||
|
return self.pressure
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# methods
|
# methods
|
||||||
def update_level(self,timestep):
|
def update_level(self,timestep):
|
||||||
|
# update level based on net flux and timestep by calculating the volume change in
|
||||||
|
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
|
||||||
net_flux = self.influx-self.outflux
|
net_flux = self.influx-self.outflux
|
||||||
delta_V = net_flux*timestep
|
delta_V = net_flux*timestep
|
||||||
new_level = (self.volume+delta_V)/self.area
|
new_level = (self.volume+delta_V)/self.area
|
||||||
@@ -127,21 +175,25 @@ class Ausgleichsbecken_class:
|
|||||||
|
|
||||||
def e_RK_4(self):
|
def e_RK_4(self):
|
||||||
# update outflux and outflux velocity based on current pipeline pressure and waterlevel in reservoir
|
# update outflux and outflux velocity based on current pipeline pressure and waterlevel in reservoir
|
||||||
yn = self.outflux_vel
|
yn = self.outflux/self.area_outflux # outflux velocity
|
||||||
h = self.level
|
h = self.level
|
||||||
dt = self.timestep
|
dt = self.timestep
|
||||||
p = self.pressure
|
p = self.pressure
|
||||||
# assume constant pipeline pressure during timestep (see comments in main_programm)
|
# assume constant pipeline pressure during timestep
|
||||||
|
# e_RK_4 timestep is way smalle than timestep of characteristic method, so this should be a valid approx.
|
||||||
|
# (furthermore I have no idea how to approximate p_hs otherwise :/ )
|
||||||
p_hs = self.pressure
|
p_hs = self.pressure
|
||||||
alpha = (self.area_outflux/self.area-1)
|
A_a = self.area_outflux
|
||||||
|
A = self.area
|
||||||
h_hs = self.update_level(dt/2)
|
h_hs = self.update_level(dt/2)
|
||||||
|
rho = self.density
|
||||||
|
g = self.g
|
||||||
# explicit 4 step Runge Kutta
|
# explicit 4 step Runge Kutta
|
||||||
Y1 = yn
|
Y1 = yn
|
||||||
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, self.pressure)
|
Y2 = yn + dt/2*FODE_function(Y1,h,A,A_a,self.pressure,rho,g)
|
||||||
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
|
Y3 = yn + dt/2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)
|
||||||
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
|
Y4 = yn + dt*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)
|
||||||
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
|
||||||
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
|
||||||
|
|
||||||
self.outflux_vel = ynp1
|
|
||||||
self.outflux = ynp1*self.area_outflux
|
self.outflux = ynp1*self.area_outflux
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 4,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -21,7 +21,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 13,
|
"execution_count": 5,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -46,7 +46,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -76,7 +76,7 @@
|
|||||||
" V.pressure = pressure_vec[i]\n",
|
" V.pressure = pressure_vec[i]\n",
|
||||||
" V.e_RK_4()\n",
|
" V.e_RK_4()\n",
|
||||||
" V.level = V.update_level(V.timestep)\n",
|
" V.level = V.update_level(V.timestep)\n",
|
||||||
" V.set_volume()\n",
|
" V.update_volume()\n",
|
||||||
" outflux_vec[i+1] = V.outflux\n",
|
" outflux_vec[i+1] = V.outflux\n",
|
||||||
" level_vec[i+1] = V.level\n",
|
" level_vec[i+1] = V.level\n",
|
||||||
" if V.level < total_min_level:\n",
|
" if V.level < total_min_level:\n",
|
||||||
@@ -87,7 +87,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 15,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -141,7 +141,7 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3.8.13 ('DT_Slot_3')",
|
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python3"
|
||||||
},
|
},
|
||||||
@@ -160,7 +160,7 @@
|
|||||||
"orig_nbformat": 4,
|
"orig_nbformat": 4,
|
||||||
"vscode": {
|
"vscode": {
|
||||||
"interpreter": {
|
"interpreter": {
|
||||||
"hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48"
|
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
|||||||
@@ -32,7 +32,7 @@ def pa_to_atm(p):
|
|||||||
def pa_to_psi(p):
|
def pa_to_psi(p):
|
||||||
return p/6894.8
|
return p/6894.8
|
||||||
|
|
||||||
def pressure_conversion(pressure, input_unit = 'bar', target_unit = 'Pa'):
|
def pressure_conversion(pressure, input_unit = 'bar', target_unit = 'Pa', return_unit = False):
|
||||||
p = pressure
|
p = pressure
|
||||||
if input_unit.lower() == 'bar':
|
if input_unit.lower() == 'bar':
|
||||||
p_pa = bar_to_pa(p)
|
p_pa = bar_to_pa(p)
|
||||||
@@ -50,20 +50,27 @@ def pressure_conversion(pressure, input_unit = 'bar', target_unit = 'Pa'):
|
|||||||
raise Exception('Given input unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi')
|
raise Exception('Given input unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi')
|
||||||
|
|
||||||
if target_unit.lower() == 'bar':
|
if target_unit.lower() == 'bar':
|
||||||
return pa_to_bar(p_pa), target_unit
|
return_vec = [pa_to_bar(p_pa), target_unit]
|
||||||
elif target_unit.lower() == 'mws':
|
elif target_unit.lower() == 'mws':
|
||||||
return pa_to_mWS(p_pa), target_unit
|
return_vec = [pa_to_mWS(p_pa), target_unit]
|
||||||
elif target_unit.lower() == 'torr':
|
elif target_unit.lower() == 'torr':
|
||||||
return pa_to_torr(p_pa), target_unit
|
return_vec = [pa_to_torr(p_pa), target_unit]
|
||||||
elif target_unit.lower() == 'atm':
|
elif target_unit.lower() == 'atm':
|
||||||
return pa_to_atm(p_pa), target_unit
|
return_vec = [pa_to_atm(p_pa), target_unit]
|
||||||
elif target_unit.lower() =='psi':
|
elif target_unit.lower() =='psi':
|
||||||
return pa_to_psi(p_pa), target_unit
|
return_vec = [pa_to_psi(p_pa), target_unit]
|
||||||
elif target_unit.lower() == 'pa':
|
elif target_unit.lower() == 'pa':
|
||||||
return p_pa, target_unit
|
return_vec = [p_pa, target_unit]
|
||||||
else:
|
else:
|
||||||
raise Exception('Given target unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi')
|
raise Exception('Given target unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi')
|
||||||
|
|
||||||
|
if return_unit == True:
|
||||||
|
# return with pressure unit
|
||||||
|
return return_vec
|
||||||
|
else:
|
||||||
|
# return without pressure unit
|
||||||
|
return return_vec[0]
|
||||||
|
|
||||||
# testing_pressure_conversion
|
# testing_pressure_conversion
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
p = 1
|
p = 1
|
||||||
@@ -72,6 +79,6 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
for input_unit in unit_dict:
|
for input_unit in unit_dict:
|
||||||
for target_unit in unit_dict:
|
for target_unit in unit_dict:
|
||||||
converted_p = pressure_conversion(p,input_unit,target_unit)
|
converted_p = pressure_conversion(p,input_unit,target_unit,return_unit=False)
|
||||||
print(input_unit,target_unit)
|
print(input_unit,target_unit)
|
||||||
print(converted_p)
|
print(converted_p)
|
||||||
Reference in New Issue
Block a user