consolidated the getter methods of the classes

This commit is contained in:
Georg ´Brantegger
2022-07-01 11:28:21 +02:00
parent b948ab39cb
commit 28d38e8bb4
3 changed files with 108 additions and 86 deletions

View File

@@ -21,6 +21,17 @@ class Druckrohrleitung_class:
time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
volume_unit = r'$\mathrm{m}^3$'
acceleration_unit_print = 'm/s²'
angle_unit_print = '°'
area_unit_print = ''
density_unit_print = 'kg/m³'
flux_unit_print = 'm³/s'
length_unit_print = 'm'
pressure_unit_print = 'Pa'
time_unit_print = 's'
velocity_unit_print = 'm/s' # for flux and pressure propagation
volume_unit_print = ''
# init
@@ -36,8 +47,9 @@ class Druckrohrleitung_class:
self.dx = total_length/number_segments
self.l_vec = np.arange(0,(number_segments+1)*self.dx,self.dx)
# workaround for try-except construct in set_number_of_timesteps
self.c = 0
# initialize for get_info method
self.c = '--'
self.dt = '--'
# setter
def set_pressure_propagation_velocity(self,c):
@@ -46,7 +58,7 @@ class Druckrohrleitung_class:
def set_number_of_timesteps(self,number_timesteps):
self.nt = number_timesteps
if self.c == 0:
if self.c == '--':
raise Exception('Please set the pressure propagation velocity before setting the number of timesteps.')
else:
self.t_vec = np.arange(0,self.nt*self.dt,self.dt)
@@ -62,7 +74,7 @@ class Druckrohrleitung_class:
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
self.p_old = self.p0.copy()
self.p_new = np.empty_like(self.p_old)
self.p = np.empty_like(self.p_old)
def set_initial_flow_velocity(self,velocity):
if np.size(velocity) == 1:
@@ -74,7 +86,7 @@ class Druckrohrleitung_class:
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
self.v_old = self.v0.copy()
self.v_new = np.empty_like(self.v_old)
self.v = np.empty_like(self.v_old)
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine,input_unit_pressure = 'Pa'):
rho = self.density
@@ -88,53 +100,42 @@ class Druckrohrleitung_class:
self.v_boundary_tur = v_turbine
self.p_boundary_res,_ = pressure_conversion(p_reservoir,input_unit_pressure,target_unit=self.pressure_unit)
self.p_boundary_tur = p_old+rho*c*v_old-rho*c*f_D*dt/(2*D)*abs(v_old)*v_old
self.v_new[0] = self.v_boundary_res.copy()
self.v_new[-1] = self.v_boundary_tur.copy()
self.p_new[0] = self.p_boundary_res.copy()
self.p_new[-1] = self.p_boundary_tur.copy()
self.v[0] = self.v_boundary_res.copy()
self.v[-1] = self.v_boundary_tur.copy()
self.p[0] = self.p_boundary_res.copy()
self.p[-1] = self.p_boundary_tur.copy()
# getter
def get_pipeline_geometry(self):
print('The total length of the pipeline is', '\n', \
self.length, self.length_unit, '\n', \
'The diameter of the pipeline is', '\n', \
self.dia, self.length_unit, '\n', \
'The pipeline is divided into', self.n_seg , 'segments of length', '\n', \
round(self.dx,1), self.length_unit, '\n', \
'The pipeline has an inclination angle of', '\n', \
self.angle, self.angle_unit)
def get_other_pipeline_info(self):
print('The Darcy-friction factor of the pipeline is', '\n', \
self.f_D, '\n', \
'The pipeline is filled with a liquid with density', '\n', \
self.density, self.density_unit, '\n', \
'The gravitational acceleration is set to', '\n', \
self.g, self.acceleration_unit)
def get_pressure_propagation_velocity(self):
print('The pressure propagation velocity in the pipeline is', '\n', \
self.c, self.velocity_unit)
def get_info(self):
new_line = '\n'
def get_number_of_timesteps(self):
print(self.nt, 'timesteps are performed in the simulation')
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The pipeline has the following attributes: {new_line}"
f"----------------------------- {new_line}"
f"Length = {self.length:<10} {self.length_unit_print} {new_line}"
f"Diameter = {self.dia:<10} {self.length_unit_print} {new_line}"
f"Number of segemnts = {self.n_seg:<10} {new_line}"
f"Number of nodes = {self.n_seg+1:<10} {new_line}"
f"Length per segment = {self.dx:<10} {self.length_unit_print} {new_line}"
f"Pipeline angle = {self.angle:<10} {self.angle_unit_print} {new_line}"
f"Darcy friction factor = {self.f_D:<10} {new_line}"
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_print} {new_line}"
f"Simulation timesteps = {self.dt:<10} {self.time_unit_print } {new_line}"
f"Number of timesteps = {self.nt:<10} {new_line}"
f"----------------------------- {new_line}"
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
def get_initial_pressure(self,target_unit='bar'):
print('The inital pressure distribution in is', '\n', \
pressure_conversion(self.p0,self.pressure_unit,target_unit))
def get_initial_flow_velocity(self):
print('The inital velocity distribution is', '\n', \
self.v0, self.velocity_unit)
print(print_str)
def get_boundary_conditions_next_timestep(self,target_unit_pressure ='bar'):
print('The pressure at the reservoir for the next timestep is', '\n', \
pressure_conversion(self.p_boundary_res,self.pressure_unit,target_unit_pressure), '\n', \
pressure_conversion(self.p_boundary_res,self.pressure_unit_print,target_unit_pressure), '\n', \
'The velocity at the reservoir for the next timestep is', '\n', \
self.v_boundary_res, self.velocity_unit, '\n', \
'The pressure at the turbine for the next timestep is', '\n', \
pressure_conversion(self.p_boundary_tur,self.pressure_unit,target_unit_pressure), '\n', \
pressure_conversion(self.p_boundary_tur,self.pressure_unit_print,target_unit_pressure), '\n', \
'The velocity at the turbine for the next timestep is', '\n', \
self.v_boundary_tur, self.velocity_unit)
@@ -149,14 +150,14 @@ class Druckrohrleitung_class:
D = self.dia
for i in range(1,nn-1):
self.v_new[i] = 0.5*(self.v_old[i-1]+self.v_old[i+1])+0.5/(rho*c)*(self.p_old[i-1]-self.p_old[i+1]) \
self.v[i] = 0.5*(self.v_old[i-1]+self.v_old[i+1])+0.5/(rho*c)*(self.p_old[i-1]-self.p_old[i+1]) \
-f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]+abs(self.v_old[i+1])*self.v_old[i+1])
self.p_new[i] = 0.5*rho*c*(self.v_old[i-1]-self.v_old[i+1])+0.5*(self.p_old[i-1]+self.p_old[i+1]) \
self.p[i] = 0.5*rho*c*(self.v_old[i-1]-self.v_old[i+1])+0.5*(self.p_old[i-1]+self.p_old[i+1]) \
-rho*c*f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]-abs(self.v_old[i+1])*self.v_old[i+1])
self.p_old = self.p_new.copy()
self.v_old = self.v_new.copy()
self.p_old = self.p.copy()
self.v_old = self.v.copy()