Preparation for non static pipeline pressure
This commit is contained in:
67
static_pipeline_pressure/Ausgleichsbecken.py
Normal file
67
static_pipeline_pressure/Ausgleichsbecken.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import numpy as np
|
||||
|
||||
def Volume_trend(influx, outflux, timestep=1, V_0=0):
|
||||
'''
|
||||
Returns the trend and the volume and the final volume, defined
|
||||
by influx and outflux patterns. The optional parameter timestep
|
||||
defines the time increment over which the fluxes are changing.
|
||||
'''
|
||||
net_flux = influx-outflux
|
||||
delta_V = net_flux*timestep
|
||||
V_trend = V_0+np.cumsum(delta_V)
|
||||
V_end = V_trend[-1]
|
||||
return V_end, V_trend
|
||||
|
||||
def Height_trend(V_trend, area=1, h_crit_low=-np.inf, h_crit_high=np.inf):
|
||||
'''
|
||||
Returns the trend and the height and the final height, defined
|
||||
by influx and outflux patterns as well as the crosssection area.
|
||||
The optional parameters h_crit_low/high indicate limits that the height
|
||||
should never exceed. If this occures, TRUE is returned in the corresponding
|
||||
h_crit_flag.
|
||||
'''
|
||||
h_trend = V_trend/area
|
||||
h_crit_flag_low = np.any(h_trend <= h_crit_low)
|
||||
h_crit_flag_high = np.any(h_trend >= h_crit_high)
|
||||
h_end = h_trend[-1]
|
||||
return h_trend, h_end, h_crit_flag_low, h_crit_flag_high
|
||||
|
||||
def get_h_halfstep(initial_height, influx, outflux, timestep, area):
|
||||
h0 = initial_height
|
||||
Q_in = influx
|
||||
Q_out = outflux
|
||||
dt = timestep
|
||||
A = area
|
||||
|
||||
h_halfstep = h0+1/A*(Q_in-Q_out)*dt/2
|
||||
|
||||
def get_p_halfstep(p0, p1):
|
||||
p_halfstep = (p0+p1)/2
|
||||
|
||||
def FODE_function(x, h, alpha, p, rho=1000., g=9.81):
|
||||
f = x*abs(x)/h*alpha+g-p/(rho*h)
|
||||
return f
|
||||
|
||||
|
||||
def e_RK_4(yn, h, dt, Q0, Q1, A0, A1, p0, p1):
|
||||
alpha = (A1/A0-1)
|
||||
|
||||
h_hs = get_h_halfstep(h, Q0, Q1, dt, A0)
|
||||
p_hs = get_p_halfstep(p0, p1)
|
||||
Y1 = yn
|
||||
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, p0)
|
||||
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
|
||||
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
||||
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
||||
|
||||
|
||||
|
||||
|
||||
## testing
|
||||
# if __name__ == "__main__":
|
||||
# influx = np.full([1, 100], 6)
|
||||
# outflux = np.full_like(influx, 4)
|
||||
# V_end, V_trend = Volume_trend(influx, outflux, timestep=0.5, V_0 = 100)
|
||||
# print(V_end)
|
||||
# print(V_trend)
|
||||
87
static_pipeline_pressure/Ausgleichsbecken_class_file.py
Normal file
87
static_pipeline_pressure/Ausgleichsbecken_class_file.py
Normal file
@@ -0,0 +1,87 @@
|
||||
from Ausgleichsbecken import FODE_function, get_h_halfstep, get_p_halfstep
|
||||
from functions.pressure_conversion import pressure_conversion
|
||||
class Ausgleichsbecken_class:
|
||||
# units
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
area_outflux_unit = r'$\mathrm{m}^2$'
|
||||
level_unit = 'm'
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
time_unit = 's'
|
||||
pressure_unit = 'Pa'
|
||||
|
||||
# init
|
||||
def __init__(self,area,outflux_area,level_min,level_max,timestep = 1):
|
||||
self.area = area # base area of the rectangular structure
|
||||
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
||||
self.level_min = level_min # lowest allowed water level
|
||||
self.level_max = level_max # highest allowed water level
|
||||
self.timestep = timestep # timestep of the simulation
|
||||
|
||||
# setter
|
||||
def set_volume(self):
|
||||
self.volume = self.level*self.area
|
||||
|
||||
def set_initial_level(self,initial_level):
|
||||
self.level = initial_level
|
||||
self.set_volume()
|
||||
|
||||
def set_influx(self,influx):
|
||||
self.influx = influx
|
||||
|
||||
def set_outflux(self,outflux):
|
||||
self.outflux = outflux
|
||||
|
||||
# getter
|
||||
def get_area(self):
|
||||
print('The base area of the cuboid reservoir is', self.area, self.area_unit)
|
||||
|
||||
def get_outflux_area(self):
|
||||
print('The outflux area from the cuboid reservoir to the pipeline is', \
|
||||
self.area_outflux, self.area_outflux_unit)
|
||||
|
||||
def get_level(self):
|
||||
print('The current level in the reservoir is', self.level , self.level_unit)
|
||||
|
||||
def get_crit_levels(self):
|
||||
print('The critical water levels in the reservoir are: \n',\
|
||||
' Minimum:', self.level_min , self.level_unit , '\n',\
|
||||
' Maximum:', self.level_max , self.level_unit )
|
||||
|
||||
def get_volume(self):
|
||||
print('The current water volume in the reservoir is', self.volume, self.volume_unit)
|
||||
|
||||
def get_timestep(self):
|
||||
print('The timestep for the simulation is' , self.timestep, self.time_unit)
|
||||
|
||||
def get_influx(self):
|
||||
print('The current influx is', self.influx, self.flux_unit)
|
||||
|
||||
def get_outflux(self):
|
||||
print('The current outflux is', self.outflux, self.flux_unit)
|
||||
|
||||
# methods
|
||||
def update_level(self,timestep):
|
||||
net_flux = self.influx-self.outflux
|
||||
delta_V = net_flux*timestep
|
||||
new_level = (self.volume+delta_V)/self.area
|
||||
return new_level
|
||||
|
||||
|
||||
def e_RK_4(self):
|
||||
# Update to deal with non constant pipeline pressure!
|
||||
yn = self.outflux/self.area_outflux
|
||||
h = self.level
|
||||
dt = self.timestep
|
||||
p,_ = pressure_conversion(self.initial_pressure,self.pressure_unit,'Pa')
|
||||
p_hs,_ = pressure_conversion(self.initial_pressure,self.pressure_unit,'Pa')
|
||||
alpha = (self.area_outflux/self.area-1)
|
||||
h_hs = self.update_level(dt/2)
|
||||
Y1 = yn
|
||||
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, self.initial_pressure)
|
||||
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
|
||||
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
||||
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
||||
|
||||
self.outflux = ynp1*self.area_outflux
|
||||
Reference in New Issue
Block a user