Merge branch 'Dev'
This commit is contained in:
@@ -1,5 +1,4 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
# from Ausgleichsbecken_functions import FODE_function, get_h_halfstep, get_p_halfstep
|
|
||||||
|
|
||||||
#importing pressure conversion function
|
#importing pressure conversion function
|
||||||
import sys
|
import sys
|
||||||
@@ -34,6 +33,9 @@ class Ausgleichsbecken_class:
|
|||||||
velocity_unit_print = 'm/s'
|
velocity_unit_print = 'm/s'
|
||||||
volume_unit_print = 'm³'
|
volume_unit_print = 'm³'
|
||||||
|
|
||||||
|
g = 9.81 # m/s²
|
||||||
|
rho = 1000 # kg/m³
|
||||||
|
|
||||||
# init
|
# init
|
||||||
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1):
|
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1):
|
||||||
self.area = area # base area of the rectangular structure
|
self.area = area # base area of the rectangular structure
|
||||||
@@ -68,6 +70,16 @@ class Ausgleichsbecken_class:
|
|||||||
self.pressure = pressure
|
self.pressure = pressure
|
||||||
self.pressure_unit = pressure_unit
|
self.pressure_unit = pressure_unit
|
||||||
self.pressure_unit_print = display_pressure_unit
|
self.pressure_unit_print = display_pressure_unit
|
||||||
|
|
||||||
|
def set_steady_state(self,ss_influx,ss_level,pressure_unit,display_pressure_unit):
|
||||||
|
ss_outflux = ss_influx
|
||||||
|
ss_outflux_vel = ss_outflux/self.area_outflux
|
||||||
|
ss_pressure = self.rho*self.g*ss_level-ss_outflux_vel**2*self.rho/2
|
||||||
|
|
||||||
|
self.set_initial_level(ss_level)
|
||||||
|
self.set_influx(ss_influx)
|
||||||
|
self.set_outflux(ss_outflux)
|
||||||
|
self.set_pressure(ss_pressure,pressure_unit,display_pressure_unit)
|
||||||
# getter
|
# getter
|
||||||
def get_info(self, full = False):
|
def get_info(self, full = False):
|
||||||
new_line = '\n'
|
new_line = '\n'
|
||||||
@@ -86,7 +98,7 @@ class Ausgleichsbecken_class:
|
|||||||
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
||||||
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
||||||
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
||||||
f"Current outflux vel = {self.outflux_vel:<10} {self.velocity_unit_print} {new_line}"
|
f"Current outflux vel = {round(self.outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
||||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
||||||
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
|
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
|
||||||
f"----------------------------- {new_line}")
|
f"----------------------------- {new_line}")
|
||||||
@@ -98,7 +110,7 @@ class Ausgleichsbecken_class:
|
|||||||
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
||||||
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
||||||
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
||||||
f"Current outflux vel = {self.outflux_vel:<10} {self.velocity_unit_print} {new_line}"
|
f"Current outflux vel = {round(self.outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
||||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
||||||
f"----------------------------- {new_line}")
|
f"----------------------------- {new_line}")
|
||||||
|
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 16,
|
"execution_count": 12,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -21,16 +21,16 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 17,
|
"execution_count": 13,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# define constants\n",
|
"# define constants\n",
|
||||||
"initial_level = 5. # m\n",
|
"initial_level = 10. # m\n",
|
||||||
"initial_influx = 0.5 # m³/s\n",
|
"initial_influx = 5. # m³/s\n",
|
||||||
"initial_outflux = 0. # m³/s\n",
|
"initial_outflux = 1. # m³/s\n",
|
||||||
"initial_pipeline_pressure = 1\n",
|
"initial_pipeline_pressure = 10.\n",
|
||||||
"initial_pressure_unit = 'bar'\n",
|
"initial_pressure_unit = 'mWS'\n",
|
||||||
"conversion_pressure_unit = 'mWS'\n",
|
"conversion_pressure_unit = 'mWS'\n",
|
||||||
"\n",
|
"\n",
|
||||||
"area_base = 1. # m²\n",
|
"area_base = 1. # m²\n",
|
||||||
@@ -41,33 +41,33 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"# for while loop\n",
|
"# for while loop\n",
|
||||||
"total_min_level = 0.01 # m\n",
|
"total_min_level = 0.01 # m\n",
|
||||||
"total_max_time = 300 # s"
|
"total_max_time = 1000 # s"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 18,
|
"execution_count": 14,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"%matplotlib qt\n",
|
"%matplotlib qt\n",
|
||||||
"\n",
|
"\n",
|
||||||
"V = Ausgleichsbecken_class(area_base, area_outflux, critical_level_low, critical_level_high,simulation_timestep)\n",
|
"V = Ausgleichsbecken_class(area_base, area_outflux, critical_level_low, critical_level_high,simulation_timestep)\n",
|
||||||
"V.set_initial_level(initial_level) \n",
|
"# V.set_initial_level(initial_level) \n",
|
||||||
"V.set_influx(initial_influx)\n",
|
"# V.set_influx(initial_influx)\n",
|
||||||
"V.set_outflux(initial_outflux)\n",
|
"# V.set_outflux(initial_outflux)\n",
|
||||||
"\n",
|
"# converted_pressure,_ = pressure_conversion(initial_pipeline_pressure,input_unit = initial_pressure_unit, target_unit = 'Pa')\n",
|
||||||
"converted_pressure, V.pressure_unit = pressure_conversion(initial_pipeline_pressure,input_unit = initial_pressure_unit, target_unit = conversion_pressure_unit)\n",
|
"# V.pressure = converted_pressure\n",
|
||||||
"V.pressure = converted_pressure\n",
|
"V.set_steady_state(initial_influx,initial_level,initial_pressure_unit,conversion_pressure_unit)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"time_vec = np.arange(0,total_max_time,simulation_timestep)\n",
|
"time_vec = np.arange(0,total_max_time,simulation_timestep)\n",
|
||||||
"outflux_vec = np.empty_like(time_vec)\n",
|
"outflux_vec = np.empty_like(time_vec)\n",
|
||||||
"outflux_vec[0] = initial_outflux\n",
|
"outflux_vec[0] = V.outflux\n",
|
||||||
"level_vec = np.empty_like(time_vec)\n",
|
"level_vec = np.empty_like(time_vec)\n",
|
||||||
"level_vec[0] = initial_level\n",
|
"level_vec[0] = V.level\n",
|
||||||
"\n",
|
|
||||||
"pressure_vec = np.full_like(time_vec,converted_pressure)*((np.sin(time_vec/5)+1)*np.exp(-time_vec/50))\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
|
"# pressure_vec = np.full_like(time_vec,converted_pressure)*((np.sin(time_vec)+1)*np.exp(-time_vec/50))\n",
|
||||||
|
"pressure_vec = np.full_like(time_vec,V.pressure)\n",
|
||||||
" \n",
|
" \n",
|
||||||
"i_max = -1\n",
|
"i_max = -1\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -82,7 +82,15 @@
|
|||||||
" if V.level < total_min_level:\n",
|
" if V.level < total_min_level:\n",
|
||||||
" i_max = i\n",
|
" i_max = i\n",
|
||||||
" break\n",
|
" break\n",
|
||||||
"\n",
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
"\n",
|
"\n",
|
||||||
"fig1, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1)\n",
|
"fig1, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1)\n",
|
||||||
"fig1.set_figheight(10)\n",
|
"fig1.set_figheight(10)\n",
|
||||||
@@ -98,16 +106,16 @@
|
|||||||
"ax2.set_xlabel(r'$t$ ['+V.time_unit+']')\n",
|
"ax2.set_xlabel(r'$t$ ['+V.time_unit+']')\n",
|
||||||
"ax2.legend()\n",
|
"ax2.legend()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"ax3.plot(time_vec[:i_max],pressure_vec[:i_max], label='Pipeline pressure at reservoir')\n",
|
"ax3.plot(time_vec[:i_max],pressure_conversion(pressure_vec[:i_max],'Pa',conversion_pressure_unit)[0], label='Pipeline pressure at reservoir')\n",
|
||||||
"ax3.set_ylabel(r'$p_{pipeline}$ ['+V.pressure_unit+']')\n",
|
"ax3.set_ylabel(r'$p_{pipeline}$ ['+conversion_pressure_unit+']')\n",
|
||||||
"ax3.set_xlabel(r'$t$ ['+V.time_unit+']')\n",
|
"ax3.set_xlabel(r'$t$ ['+V.time_unit+']')\n",
|
||||||
"ax3.legend()\n",
|
"ax3.legend()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# plt.subplots_adjust(left=0.2, bottom=0.2)\n",
|
"# plt.subplots_adjust(left=0.2, bottom=0.2)\n",
|
||||||
"ax4.set_axis_off()\n",
|
"ax4.set_axis_off()\n",
|
||||||
"cell_text = np.array([[initial_level, V.level_unit], \\\n",
|
"cell_text = np.array([[level_vec[0], V.level_unit], \\\n",
|
||||||
" [initial_influx, V.flux_unit], \\\n",
|
" [initial_influx, V.flux_unit], \\\n",
|
||||||
" [initial_outflux, V.flux_unit], \\\n",
|
" [outflux_vec[0], V.flux_unit], \\\n",
|
||||||
" [simulation_timestep, V.time_unit], \\\n",
|
" [simulation_timestep, V.time_unit], \\\n",
|
||||||
" [area_base, V.area_unit], \\\n",
|
" [area_base, V.area_unit], \\\n",
|
||||||
" [area_outflux, V.area_unit]])\n",
|
" [area_outflux, V.area_unit]])\n",
|
||||||
@@ -133,7 +141,7 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
"display_name": "Python 3.8.13 ('DT_Slot_3')",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python3"
|
||||||
},
|
},
|
||||||
@@ -152,7 +160,7 @@
|
|||||||
"orig_nbformat": 4,
|
"orig_nbformat": 4,
|
||||||
"vscode": {
|
"vscode": {
|
||||||
"interpreter": {
|
"interpreter": {
|
||||||
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
"hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@@ -41,7 +41,7 @@ class Druckrohrleitung_class:
|
|||||||
self.n_seg = number_segments
|
self.n_seg = number_segments
|
||||||
self.angle = pipeline_angle
|
self.angle = pipeline_angle
|
||||||
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
|
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
|
||||||
self.density = rho
|
self.rho = rho
|
||||||
self.g = g
|
self.g = g
|
||||||
|
|
||||||
self.dx = total_length/number_segments
|
self.dx = total_length/number_segments
|
||||||
@@ -89,8 +89,8 @@ class Druckrohrleitung_class:
|
|||||||
self.v_old = self.v0.copy()
|
self.v_old = self.v0.copy()
|
||||||
self.v = np.empty_like(self.v_old)
|
self.v = np.empty_like(self.v_old)
|
||||||
|
|
||||||
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine,input_unit_pressure = 'Pa'):
|
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine):
|
||||||
rho = self.density
|
rho = self.rho
|
||||||
c = self.c
|
c = self.c
|
||||||
f_D = self.f_D
|
f_D = self.f_D
|
||||||
dt = self.dt
|
dt = self.dt
|
||||||
@@ -108,6 +108,14 @@ class Druckrohrleitung_class:
|
|||||||
self.p[0] = self.p_boundary_res.copy()
|
self.p[0] = self.p_boundary_res.copy()
|
||||||
self.p[-1] = self.p_boundary_tur.copy()
|
self.p[-1] = self.p_boundary_tur.copy()
|
||||||
|
|
||||||
|
|
||||||
|
def set_steady_state(self,ss_flux,ss_level_reservoir,pl_vec,h_vec,pressure_unit,display_pressure_unit):
|
||||||
|
ss_v0 = np.full(self.n_seg+1,ss_flux/(self.dia**2/4*np.pi))
|
||||||
|
ss_pressure = (self.rho*self.g*(ss_level_reservoir+h_vec)-ss_v0**2*self.rho/2)-(self.f_D*pl_vec/self.dia*self.rho/2*ss_v0**2)
|
||||||
|
|
||||||
|
self.set_initial_flow_velocity(ss_v0)
|
||||||
|
self.set_initial_pressure(ss_pressure,pressure_unit,display_pressure_unit)
|
||||||
|
|
||||||
# getter
|
# getter
|
||||||
def get_info(self):
|
def get_info(self):
|
||||||
new_line = '\n'
|
new_line = '\n'
|
||||||
@@ -150,7 +158,7 @@ class Druckrohrleitung_class:
|
|||||||
def timestep_characteristic_method(self):
|
def timestep_characteristic_method(self):
|
||||||
#number of nodes
|
#number of nodes
|
||||||
nn = self.n_seg+1
|
nn = self.n_seg+1
|
||||||
rho = self.density
|
rho = self.rho
|
||||||
c = self.c
|
c = self.c
|
||||||
f_D = self.f_D
|
f_D = self.f_D
|
||||||
dt = self.dt
|
dt = self.dt
|
||||||
|
|||||||
140
Regler/Regler_class_file.py
Normal file
140
Regler/Regler_class_file.py
Normal file
@@ -0,0 +1,140 @@
|
|||||||
|
import numpy as np
|
||||||
|
#based on https://en.wikipedia.org/wiki/PID_controller#Discrete_implementation
|
||||||
|
|
||||||
|
def trap_int(vec,timestep):
|
||||||
|
l = np.size(vec)
|
||||||
|
int = 0
|
||||||
|
for i in range(l-1):
|
||||||
|
int = int + (vec[i]+vec[i+1])/2*timestep
|
||||||
|
return int
|
||||||
|
|
||||||
|
|
||||||
|
def ISE_fun(error_history,timestep):
|
||||||
|
# calcuate the integral of square error
|
||||||
|
e = np.array(error_history)
|
||||||
|
dt = timestep
|
||||||
|
ise = trap_int(e**2,dt)
|
||||||
|
return ise
|
||||||
|
|
||||||
|
def IAE_fun(error_history,timestep):
|
||||||
|
# calcuate the integral of absolute error
|
||||||
|
e = np.array(error_history)
|
||||||
|
dt = timestep
|
||||||
|
iae = trap_int(np.abs(e),dt)
|
||||||
|
return iae
|
||||||
|
|
||||||
|
def ITSE_fun(error_history,timestep):
|
||||||
|
# calcuate the integral of time multiply square error
|
||||||
|
e = np.array(error_history)
|
||||||
|
dt = timestep
|
||||||
|
n = np.size(e)
|
||||||
|
t = np.arange(0,n)*dt
|
||||||
|
itse = trap_int(t*e**2,dt)
|
||||||
|
return itse
|
||||||
|
|
||||||
|
def ITAE_fun(error_history,timestep):
|
||||||
|
# calcuate the integral of time multiply absolute error
|
||||||
|
e = np.array(error_history)
|
||||||
|
dt = timestep
|
||||||
|
n = np.size(e)
|
||||||
|
t = np.arange(0,n)*dt
|
||||||
|
itae = trap_int(np.abs(e),dt)
|
||||||
|
return itae
|
||||||
|
|
||||||
|
class P_controller_class:
|
||||||
|
# def __init__(self,setpoint,proportionality_constant):
|
||||||
|
# self.SP = setpoint
|
||||||
|
# self.Kp = proportionality_constant
|
||||||
|
# self.error_history = []
|
||||||
|
# self.control_variable = 0.1
|
||||||
|
# self.lower_limit = -0.1 # default
|
||||||
|
# self.upper_limit = +0.1 # default
|
||||||
|
|
||||||
|
# def set_control_variable_limits(self,lower_limit,upper_limit):
|
||||||
|
# self.lower_limit = lower_limit
|
||||||
|
# self.upper_limit = upper_limit
|
||||||
|
|
||||||
|
# def calculate_error(self,process_variable):
|
||||||
|
# self.error = self.SP-process_variable
|
||||||
|
# self.error_history.append(self.error)
|
||||||
|
|
||||||
|
# def get_control_variable(self):
|
||||||
|
# new_control = self.control_variable+self.Kp*(self.error_history[-1]-self.error_history[-2])
|
||||||
|
# if new_control < self.lower_limit:
|
||||||
|
# new_control = self.lower_limit
|
||||||
|
|
||||||
|
# if new_control > self.upper_limit:
|
||||||
|
# new_control = self.upper_limit
|
||||||
|
|
||||||
|
# self.control_variable = new_control
|
||||||
|
# # print(new_control)
|
||||||
|
# return new_control
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class PI_controller_class:
|
||||||
|
def __init__(self,setpoint,deadband,proportionality_constant,Ti, timestep):
|
||||||
|
self.SP = setpoint
|
||||||
|
self.db = deadband
|
||||||
|
self.Kp = proportionality_constant
|
||||||
|
self.Ti = Ti
|
||||||
|
self.dt = timestep
|
||||||
|
self.error_history = [0]
|
||||||
|
|
||||||
|
self.cv_lower_limit = 0 # default
|
||||||
|
self.cv_upper_limit = +1 # default
|
||||||
|
|
||||||
|
|
||||||
|
def set_control_variable_limits(self,lower_limit,upper_limit):
|
||||||
|
self.cv_lower_limit = lower_limit
|
||||||
|
self.cv_upper_limit = upper_limit
|
||||||
|
|
||||||
|
def calculate_error(self,process_variable):
|
||||||
|
self.error = process_variable-self.SP
|
||||||
|
self.error_history.append(self.error)
|
||||||
|
|
||||||
|
def get_control_variable(self,process_variable):
|
||||||
|
|
||||||
|
self.calculate_error(process_variable)
|
||||||
|
|
||||||
|
cv = self.control_variable
|
||||||
|
Kp = self.Kp
|
||||||
|
Ti = self.Ti
|
||||||
|
dt = self.dt
|
||||||
|
|
||||||
|
e0 = self.error_history[-1]
|
||||||
|
e1 = self.error_history[-2]
|
||||||
|
if abs(self.error) > self.db:
|
||||||
|
new_control = cv+Kp*(e0-e1)+dt/Ti*e0
|
||||||
|
else:
|
||||||
|
new_control = cv
|
||||||
|
|
||||||
|
if new_control < self.cv_lower_limit:
|
||||||
|
new_control = self.cv_lower_limit
|
||||||
|
|
||||||
|
if new_control > self.cv_upper_limit:
|
||||||
|
new_control = self.cv_upper_limit
|
||||||
|
self.control_variable = new_control
|
||||||
|
return self.control_variable
|
||||||
|
|
||||||
|
def get_performance_indicators(self,ISE=True,IAE=True,ITSE=True,ITAE=True):
|
||||||
|
ise = np.nan
|
||||||
|
iae = np.nan
|
||||||
|
itse = np.nan
|
||||||
|
itae = np.nan
|
||||||
|
|
||||||
|
# self.error_history[1:] because the first value of the error history is set to [0]
|
||||||
|
# to avoid special case handling in the calculation of the controll variable
|
||||||
|
if ISE == True:
|
||||||
|
ise = ISE_fun(self.error_history[1:],self.dt)
|
||||||
|
if IAE == True:
|
||||||
|
iae = IAE_fun(self.error_history[1:],self.dt)
|
||||||
|
if ITSE == True:
|
||||||
|
itse = ITSE_fun(self.error_history[1:],self.dt)
|
||||||
|
if ITAE == True:
|
||||||
|
itae = ITAE_fun(self.error_history[1:],self.dt)
|
||||||
|
|
||||||
|
return ise,iae,itse,itae
|
||||||
|
|
||||||
|
|
||||||
343
Regler/regler_test.ipynb
Normal file
343
Regler/regler_test.ipynb
Normal file
@@ -0,0 +1,343 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 34,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import matplotlib.pyplot as plt\n",
|
||||||
|
"from Regler_class_file import PI_controller_class\n",
|
||||||
|
"\n",
|
||||||
|
"#importing Druckrohrleitung\n",
|
||||||
|
"import sys\n",
|
||||||
|
"import os\n",
|
||||||
|
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
|
||||||
|
"parent = os.path.dirname(current)\n",
|
||||||
|
"sys.path.append(parent)\n",
|
||||||
|
"from functions.pressure_conversion import pressure_conversion\n",
|
||||||
|
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
|
||||||
|
"from Turbinen.Turbinen_class_file import Francis_Turbine"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 35,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#define constants\n",
|
||||||
|
"\n",
|
||||||
|
"#Turbine\n",
|
||||||
|
"Q_nenn = 0.85\n",
|
||||||
|
"p_nenn,_ = pressure_conversion(10.6,'bar','Pa')\n",
|
||||||
|
"\n",
|
||||||
|
"# physics\n",
|
||||||
|
"g = 9.81 # gravitational acceleration [m/s²]\n",
|
||||||
|
"rho = 1000. # density of water [kg/m³]\n",
|
||||||
|
"\n",
|
||||||
|
"# define controller constants\n",
|
||||||
|
"target_level = 8. # m\n",
|
||||||
|
"Kp = 0.1\n",
|
||||||
|
"Ti = 100.\n",
|
||||||
|
"deadband_range = 0.05 # m\n",
|
||||||
|
"\n",
|
||||||
|
"# reservoir\n",
|
||||||
|
"initial_level = target_level\n",
|
||||||
|
"initial_influx = Q_nenn/2 # initial influx of volume to the reservoir [m³/s]\n",
|
||||||
|
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
||||||
|
"conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
|
||||||
|
"area_base = 74. # total base are of the cuboid reservoir [m²] \n",
|
||||||
|
"area_outflux = 1. # outflux area of the reservoir, given by pipeline area [m²]\n",
|
||||||
|
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
|
||||||
|
"critical_level_high = np.inf # for yet-to-be-implemented warnings[m]\n",
|
||||||
|
"\n",
|
||||||
|
"p0 = rho*g*initial_level-0.5*rho*(initial_influx/area_outflux)**2\n",
|
||||||
|
"\n",
|
||||||
|
"# offset the pressure in front of the turbine to get realisitc fluxes\n",
|
||||||
|
"h_fict = 100\n",
|
||||||
|
"offset_pressure = rho*g*h_fict\n",
|
||||||
|
"\n",
|
||||||
|
"t_max = 1e3 #s\n",
|
||||||
|
"nt = int(1e6) # number of simulation steps of reservoir in between timesteps of pipeline \n",
|
||||||
|
"dt = t_max/nt\n",
|
||||||
|
"\n",
|
||||||
|
"t_vec = np.arange(0,nt+1,1)*dt\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 36,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# create objects\n",
|
||||||
|
"\n",
|
||||||
|
"V = Ausgleichsbecken_class(area_base,area_outflux,critical_level_low,critical_level_high,dt)\n",
|
||||||
|
"V.set_steady_state(initial_influx,initial_level,initial_pressure_unit,conversion_pressure_unit)\n",
|
||||||
|
"\n",
|
||||||
|
"T1 = Francis_Turbine(Q_nenn,p_nenn)\n",
|
||||||
|
"T1.set_steady_state(initial_influx,p0+offset_pressure)\n",
|
||||||
|
"T1.set_closing_time(500)\n",
|
||||||
|
"\n",
|
||||||
|
"Pegelregler = PI_controller_class(target_level,deadband_range,Kp,Ti,dt)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 37,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"level_vec = np.full(nt+1,V.level)\n",
|
||||||
|
"LA_ist_vec = np.full(nt+1,T1.LA)\n",
|
||||||
|
"LA_soll_vec = np.full(nt+1,T1.LA)\n",
|
||||||
|
"Q_vec = np.full(nt+1,initial_influx)\n",
|
||||||
|
"\n",
|
||||||
|
"Pegelregler.control_variable = T1.LA"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 38,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"0.0\n",
|
||||||
|
"10.0\n",
|
||||||
|
"20.0\n",
|
||||||
|
"30.0\n",
|
||||||
|
"40.0\n",
|
||||||
|
"50.0\n",
|
||||||
|
"60.0\n",
|
||||||
|
"70.0\n",
|
||||||
|
"80.0\n",
|
||||||
|
"90.0\n",
|
||||||
|
"100.0\n",
|
||||||
|
"110.0\n",
|
||||||
|
"120.0\n",
|
||||||
|
"130.0\n",
|
||||||
|
"140.0\n",
|
||||||
|
"150.0\n",
|
||||||
|
"160.0\n",
|
||||||
|
"170.0\n",
|
||||||
|
"180.0\n",
|
||||||
|
"190.0\n",
|
||||||
|
"200.0\n",
|
||||||
|
"210.0\n",
|
||||||
|
"220.0\n",
|
||||||
|
"230.0\n",
|
||||||
|
"240.0\n",
|
||||||
|
"250.0\n",
|
||||||
|
"260.0\n",
|
||||||
|
"270.0\n",
|
||||||
|
"280.0\n",
|
||||||
|
"290.0\n",
|
||||||
|
"300.0\n",
|
||||||
|
"310.0\n",
|
||||||
|
"320.0\n",
|
||||||
|
"330.0\n",
|
||||||
|
"340.0\n",
|
||||||
|
"350.0\n",
|
||||||
|
"360.0\n",
|
||||||
|
"370.0\n",
|
||||||
|
"380.0\n",
|
||||||
|
"390.0\n",
|
||||||
|
"400.0\n",
|
||||||
|
"410.0\n",
|
||||||
|
"420.0\n",
|
||||||
|
"430.0\n",
|
||||||
|
"440.0\n",
|
||||||
|
"450.0\n",
|
||||||
|
"460.0\n",
|
||||||
|
"470.0\n",
|
||||||
|
"480.0\n",
|
||||||
|
"490.0\n",
|
||||||
|
"500.0\n",
|
||||||
|
"510.0\n",
|
||||||
|
"520.0\n",
|
||||||
|
"530.0\n",
|
||||||
|
"540.0\n",
|
||||||
|
"550.0\n",
|
||||||
|
"560.0\n",
|
||||||
|
"570.0\n",
|
||||||
|
"580.0\n",
|
||||||
|
"590.0\n",
|
||||||
|
"600.0\n",
|
||||||
|
"610.0\n",
|
||||||
|
"620.0\n",
|
||||||
|
"630.0\n",
|
||||||
|
"640.0\n",
|
||||||
|
"650.0\n",
|
||||||
|
"660.0\n",
|
||||||
|
"670.0\n",
|
||||||
|
"680.0\n",
|
||||||
|
"690.0\n",
|
||||||
|
"700.0\n",
|
||||||
|
"710.0\n",
|
||||||
|
"720.0\n",
|
||||||
|
"730.0\n",
|
||||||
|
"740.0\n",
|
||||||
|
"750.0\n",
|
||||||
|
"760.0\n",
|
||||||
|
"770.0\n",
|
||||||
|
"780.0\n",
|
||||||
|
"790.0\n",
|
||||||
|
"800.0\n",
|
||||||
|
"810.0\n",
|
||||||
|
"820.0\n",
|
||||||
|
"830.0\n",
|
||||||
|
"840.0\n",
|
||||||
|
"850.0\n",
|
||||||
|
"860.0\n",
|
||||||
|
"870.0\n",
|
||||||
|
"880.0\n",
|
||||||
|
"890.0\n",
|
||||||
|
"900.0\n",
|
||||||
|
"910.0\n",
|
||||||
|
"920.0\n",
|
||||||
|
"930.0\n",
|
||||||
|
"940.0\n",
|
||||||
|
"950.0\n",
|
||||||
|
"960.0\n",
|
||||||
|
"970.0\n",
|
||||||
|
"980.0\n",
|
||||||
|
"990.0\n",
|
||||||
|
"1000.0\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# time loop\n",
|
||||||
|
"\n",
|
||||||
|
"for i in range(nt+1):\n",
|
||||||
|
"\n",
|
||||||
|
" if np.mod(i,1e4) == 0:\n",
|
||||||
|
" print(t_vec[i])\n",
|
||||||
|
"\n",
|
||||||
|
" if t_vec[i] == 0.4*np.max(t_vec):\n",
|
||||||
|
" V.influx = 0\n",
|
||||||
|
"\n",
|
||||||
|
" p = rho*g*V.level-0.5*rho*(V.outflux_vel)**2\n",
|
||||||
|
"\n",
|
||||||
|
" LA_soll = Pegelregler.get_control_variable(V.level)\n",
|
||||||
|
" T1.change_LA(LA_soll,dt)\n",
|
||||||
|
" LA_soll_vec[i] = LA_soll\n",
|
||||||
|
" LA_ist_vec[i] = T1.LA\n",
|
||||||
|
" Q_vec[i] = T1.get_Q(p+offset_pressure)\n",
|
||||||
|
"\n",
|
||||||
|
" V.pressure = p\n",
|
||||||
|
" V.outflux_vel = 1/V.area_outflux*Q_vec[i]\n",
|
||||||
|
"\n",
|
||||||
|
" V.e_RK_4() \n",
|
||||||
|
" V.level = V.update_level(V.timestep) \n",
|
||||||
|
" V.set_volume() \n",
|
||||||
|
" level_vec[i] = V.level \n",
|
||||||
|
" \n",
|
||||||
|
" "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 39,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%matplotlib qt5\n",
|
||||||
|
"# time loop\n",
|
||||||
|
"\n",
|
||||||
|
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
|
||||||
|
"fig1,axs1 = plt.subplots(3,1)\n",
|
||||||
|
"axs1[0].set_title('Level')\n",
|
||||||
|
"axs1[0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"axs1[0].set_ylabel(r'$h$ [$\\mathrm{m}$]')\n",
|
||||||
|
"axs1[0].plot(t_vec,level_vec)\n",
|
||||||
|
"axs1[0].set_ylim([0.85*initial_level,1.05*initial_level])\n",
|
||||||
|
"axs1[1].set_title('Flux')\n",
|
||||||
|
"axs1[1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m} / \\mathrm{s}^3$]')\n",
|
||||||
|
"axs1[1].plot(t_vec,Q_vec)\n",
|
||||||
|
"axs1[1].set_ylim([0,2*initial_influx])\n",
|
||||||
|
"axs1[2].set_title('LA')\n",
|
||||||
|
"axs1[2].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"axs1[2].set_ylabel(r'$LA$ [\\%]')\n",
|
||||||
|
"axs1[2].plot(t_vec,LA_soll_vec)\n",
|
||||||
|
"axs1[2].plot(t_vec,LA_ist_vec)\n",
|
||||||
|
"axs1[2].set_ylim([0,1])\n",
|
||||||
|
"fig1.tight_layout()\n",
|
||||||
|
"fig1.show()\n",
|
||||||
|
"plt.pause(1)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 40,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[<matplotlib.lines.Line2D at 0x26263b78be0>]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 40,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"fig2 = plt.figure()\n",
|
||||||
|
"plt.plot(t_vec,Pegelregler.error_history[1:])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 41,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[8. 8. 8. ... 7.21126138 7.21126138 7.21126138]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print(level_vec[:])"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.13"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 4,
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
||||||
386
Regler/regler_test_optimierung.ipynb
Normal file
386
Regler/regler_test_optimierung.ipynb
Normal file
File diff suppressed because one or more lines are too long
40
Turbinen/Turbinen_class_file.py
Normal file
40
Turbinen/Turbinen_class_file.py
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
import numpy as np
|
||||||
|
#importing pressure conversion function
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
current = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
parent = os.path.dirname(current)
|
||||||
|
sys.path.append(parent)
|
||||||
|
from functions.pressure_conversion import pressure_conversion
|
||||||
|
|
||||||
|
class Francis_Turbine:
|
||||||
|
def __init__(self, Q_nenn,p_nenn):
|
||||||
|
self.Q_n = Q_nenn
|
||||||
|
self.p_n = p_nenn
|
||||||
|
self.LA_n = 1. # 100%
|
||||||
|
h,_ = pressure_conversion(p_nenn,'Pa','MWs')
|
||||||
|
self.A = Q_nenn/(np.sqrt(2*9.81*h)*0.98)
|
||||||
|
|
||||||
|
def set_LA(self,LA):
|
||||||
|
self.LA = LA
|
||||||
|
|
||||||
|
def get_Q(self,p):
|
||||||
|
self.Q = self.Q_n*(self.LA/self.LA_n)*np.sqrt(p/self.p_n)
|
||||||
|
return self.Q
|
||||||
|
|
||||||
|
def set_closing_time(self,t_closing):
|
||||||
|
self.t_c = t_closing
|
||||||
|
self.d_LA_max_dt = 1/t_closing
|
||||||
|
|
||||||
|
def change_LA(self,LA_soll,timestep):
|
||||||
|
LA_diff = self.LA-LA_soll
|
||||||
|
LA_diff_max = self.d_LA_max_dt*timestep
|
||||||
|
if abs(LA_diff) > LA_diff_max:
|
||||||
|
LA_diff = np.sign(LA_diff)*LA_diff_max
|
||||||
|
self.LA = self.LA-LA_diff
|
||||||
|
|
||||||
|
def set_steady_state(self,ss_flux,ss_pressure):
|
||||||
|
ss_LA = self.LA_n*ss_flux/self.Q_n*np.sqrt(self.p_n/ss_pressure)
|
||||||
|
self.set_LA(ss_LA)
|
||||||
|
if ss_LA < 0 or ss_LA > 1:
|
||||||
|
print('LA out of range')
|
||||||
239
Turbinen/Turbinen_test.ipynb
Normal file
239
Turbinen/Turbinen_test.ipynb
Normal file
File diff suppressed because one or more lines are too long
22
Turbinen/old/Durchflusskennlinie.csv
Normal file
22
Turbinen/old/Durchflusskennlinie.csv
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
,11.4,11.2,11,10.8,10.6,10.4,10.2,10,9.8
|
||||||
|
0,0,0,0,0,0,0,0,0,0
|
||||||
|
0.05,44.6719225,43.934144,43.3914212,43.005945,42.7411852,42.5620659,42.4351104,42.3285595,42.2124611
|
||||||
|
0.1,93.5257218,92.1813802,91.0120507,89.9819869,89.0566946,88.2030946,87.3896575,86.5865116,85.7655241
|
||||||
|
0.15,142.455373,140.502298,138.703994,137.026824,135.438371,133.907593,132.404945,130.902474,129.373898
|
||||||
|
0.2,191.35358,188.792245,186.365298,184.041241,181.789769,179.581903,177.390108,175.188376,172.952294
|
||||||
|
0.25,240.112708,236.946245,233.893698,230.92573,228.014163,225.132101,222.254034,219.355912,216.415204
|
||||||
|
0.3,288.625576,284.85976,281.187353,277.581187,274.01522,270.464644,266.905977,263.31713,259.677456
|
||||||
|
0.35,336.786234,332.429439,328.145567,323.909615,319.697669,315.487006,311.256165,306.985012,302.654777
|
||||||
|
0.4,384.490739,379.553866,374.669505,369.814802,364.967956,360.108307,355.216403,350.274048,345.264331
|
||||||
|
0.45,431.637894,426.134271,420.662881,415.202987,409.734875,404.239922,398.700655,393.100789,387.425251
|
||||||
|
0.5,478.129951,472.075209,466.032607,459.983487,453.910176,447.796055,441.625591,435.384378,429.059145
|
||||||
|
0.55,523.873268,517.285198,510.689413,504.069281,497.409128,490.694283,483.911113,477.047044,470.090565
|
||||||
|
0.6,568.778912,561.677293,554.548395,547.377555,540.151033,532.856054,525.480827,518.014558,510.447451
|
||||||
|
0.65,612.763186,605.169605,597.529525,589.830179,582.059697,574.207132,566.262474,558.216649,550.061519
|
||||||
|
0.7,655.7481,647.685753,639.558081,631.354134,623.063835,614.677994,606.188309,597.587364,588.868614
|
||||||
|
0.75,697.661758,689.155243,680.565018,671.881864,663.097416,654.204159,645.195426,636.065384,626.809013
|
||||||
|
0.8,738.438667,729.51377,720.487263,711.35157,702.099947,692.726469,683.226022,673.594278,663.827671
|
||||||
|
0.85,778.019972,768.703447,759.267942,749.707427,740.016685,730.191293,720.227602,710.122707,699.874419
|
||||||
|
0.9,816.35361,806.672962,796.856534,786.899741,776.798797,766.550685,756.153132,745.604572,734.904109
|
||||||
|
0.95,853.394385,843.377654,833.208949,822.885029,812.403437,801.762466,790.961126,779.999101,768.876705
|
||||||
|
1,889.103974,878.779525,868.287549,857.626044,846.793778,835.790258,824.615682,813.270891,801.757325
|
||||||
|
33
Turbinen/old/Turbinen_class_file.py
Normal file
33
Turbinen/old/Turbinen_class_file.py
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
from matplotlib.pyplot import fill
|
||||||
|
import numpy as np
|
||||||
|
from scipy.interpolate import interp2d
|
||||||
|
|
||||||
|
#importing pressure conversion function
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
current = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
parent = os.path.dirname(current)
|
||||||
|
sys.path.append(parent)
|
||||||
|
from functions.pressure_conversion import pressure_conversion
|
||||||
|
|
||||||
|
class Francis_turbine_class:
|
||||||
|
def __init__(self,CSV_name='Durchflusskennlinie.csv'):
|
||||||
|
csv = np.genfromtxt(CSV_name,delimiter=',')
|
||||||
|
n_rows,_ = np.shape(csv)
|
||||||
|
self.raw_csv = np.append(csv,np.zeros([n_rows,1]),axis = 1)
|
||||||
|
|
||||||
|
def extract_csv(self,CSV_pressure_unit='bar'):
|
||||||
|
ps_vec,_ = pressure_conversion(self.raw_csv[0,1:],CSV_pressure_unit,'Pa')
|
||||||
|
self.raw_ps_vec = np.flip(ps_vec)
|
||||||
|
self.raw_LA_vec = self.raw_csv[1:,0]
|
||||||
|
self.raw_Qs_mat = np.fliplr(self.raw_csv[1:,1:])/1000. # convert from l/s to m³/s
|
||||||
|
|
||||||
|
def get_Q_fun(self):
|
||||||
|
Q_fun = interp2d(self.raw_ps_vec,self.raw_LA_vec,self.raw_Qs_mat,bounds_error=False,fill_value=None)
|
||||||
|
return Q_fun
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
319
Turbinen/old/Turbinen_test.ipynb
Normal file
319
Turbinen/old/Turbinen_test.ipynb
Normal file
File diff suppressed because one or more lines are too long
278
Turbinen/old/messy.ipynb
Normal file
278
Turbinen/old/messy.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 1,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -11,57 +11,62 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"from functions.pressure_conversion import pressure_conversion\n",
|
"from functions.pressure_conversion import pressure_conversion\n",
|
||||||
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
|
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
|
||||||
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class"
|
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
|
||||||
|
"from Turbinen.Turbinen_class_file import Francis_Turbine"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 2,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"#define constants\n",
|
"#define constants\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"#Turbine\n",
|
||||||
|
"Q_nenn = 0.85\n",
|
||||||
|
"p_nenn,_ = pressure_conversion(10.6,'bar','Pa')\n",
|
||||||
|
"\n",
|
||||||
"# physics\n",
|
"# physics\n",
|
||||||
"g = 9.81 # gravitational acceleration [m/s²]\n",
|
"g = 9.81 # gravitational acceleration [m/s²]\n",
|
||||||
"rho = 1000. # density of water [kg/m³]\n",
|
"rho = 1000. # density of water [kg/m³]\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# pipeline\n",
|
"# pipeline\n",
|
||||||
"L = 1000. # length of pipeline [m]\n",
|
"L = 535.+478. # length of pipeline [m]\n",
|
||||||
"D = 1. # pipe diameter [m]\n",
|
"D = 0.9 # pipe diameter [m]\n",
|
||||||
"A_pipe = D**2/4*np.pi # pipeline area\n",
|
"A_pipe = D**2/4*np.pi # pipeline area\n",
|
||||||
"h_pipe = 200 # hydraulic head without reservoir [m] \n",
|
"h_pipe = 105 # hydraulic head without reservoir [m] \n",
|
||||||
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
|
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
|
||||||
"n = 100 # number of pipe segments in discretization\n",
|
"n = 50 # number of pipe segments in discretization\n",
|
||||||
"# consider replacing Q0 with a vector be be more flexible in initial conditions\n",
|
"# consider replacing Q0 with a vector be be more flexible in initial conditions\n",
|
||||||
"Q0 = 2. # initial flow in whole pipe [m³/s]\n",
|
"# Q0 = Q_nenn # initial flow in whole pipe [m³/s]\n",
|
||||||
"v0 = Q0/A_pipe # initial flow velocity [m/s]\n",
|
"# v0 = Q0/A_pipe # initial flow velocity [m/s]\n",
|
||||||
"f_D = 0.1 # Darcy friction factor\n",
|
"f_D = 0.014 # Darcy friction factor\n",
|
||||||
"c = 400. # propagation velocity of the pressure wave [m/s]\n",
|
"c = 500. # propagation velocity of the pressure wave [m/s]\n",
|
||||||
"# consider prescribing a total simulation time and deducting the number of timesteps from that\n",
|
"# consider prescribing a total simulation time and deducting the number of timesteps from that\n",
|
||||||
"nt = 1000 # number of time steps after initial conditions\n",
|
"nt = 3000 # number of time steps after initial conditions\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# derivatives of the pipeline constants\n",
|
"# derivatives of the pipeline constants\n",
|
||||||
"dx = L/n # length of each pipe segment\n",
|
"dx = L/n # length of each pipe segment\n",
|
||||||
"dt = dx/c # timestep according to method of characterisitics\n",
|
"dt = dx/c # timestep according to method of characterisitics\n",
|
||||||
"nn = n+1 # number of nodes\n",
|
"nn = n+1 # number of nodes\n",
|
||||||
"initial_level = 20. # water level in upstream reservoir [m]\n",
|
"initial_level = 8. # water level in upstream reservoir [m]\n",
|
||||||
"p0 = rho*g*initial_level-v0**2*rho/2\n",
|
"# p0 = rho*g*initial_level-v0**2*rho/2\n",
|
||||||
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
||||||
"t_vec = np.arange(0,nt+1)*dt # time vector\n",
|
"t_vec = np.arange(0,nt+1)*dt # time vector\n",
|
||||||
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node \n",
|
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node \n",
|
||||||
"v_init = np.full(nn,Q0/(A_pipe)) # initial velocity distribution in pipeline\n",
|
"# v_init = np.full(nn,Q0/(D**2/4*np.pi)) # initial velocity distribution in pipeline\n",
|
||||||
"p_init = (rho*g*(initial_level+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n",
|
"# p_init = (rho*g*(initial_level+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# reservoir\n",
|
"# reservoir\n",
|
||||||
"# replace influx by time variable vector\n",
|
"# replace influx by vector\n",
|
||||||
"initial_influx = Q0 # initial influx of volume to the reservoir [m³/s]\n",
|
"initial_influx = Q_nenn/1.1 # initial influx of volume to the reservoir [m³/s]\n",
|
||||||
"initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
|
"# initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
|
||||||
"initial_pipeline_pressure = p0 # Initial condition for the static pipeline pressure at the reservoir (= hydrostatic pressure - dynamic pressure) \n",
|
"# initial_pipeline_pressure = p0 # Initial condition for the static pipeline pressure at the reservoir (= hydrostatic pressure - dynamic pressure) \n",
|
||||||
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
||||||
"conversion_pressure_unit = 'mWS' # for pressure conversion in print statements and plot labels\n",
|
"conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
|
||||||
"area_base = 20. # total base are of the cuboid reservoir [m²] \n",
|
"area_base = 74. # total base are of the cuboid reservoir [m²] \n",
|
||||||
"area_outflux = A_pipe # outlfux area of the reservoir, given by pipeline area [m²]\n",
|
"area_outflux = A_pipe # outlfux area of the reservoir, given by pipeline area [m²]\n",
|
||||||
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
|
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
|
||||||
"critical_level_high = np.inf # for yet-to-be-implemented warnings[m]\n",
|
"critical_level_high = np.inf # for yet-to-be-implemented warnings[m]\n",
|
||||||
@@ -69,6 +74,7 @@
|
|||||||
"# make sure e-RK4 method of reservoir has a small enough timestep to avoid runaway numerical error\n",
|
"# make sure e-RK4 method of reservoir has a small enough timestep to avoid runaway numerical error\n",
|
||||||
"nt_eRK4 = 1000 # number of simulation steps of reservoir in between timesteps of pipeline \n",
|
"nt_eRK4 = 1000 # number of simulation steps of reservoir in between timesteps of pipeline \n",
|
||||||
"simulation_timestep = dt/nt_eRK4\n",
|
"simulation_timestep = dt/nt_eRK4\n",
|
||||||
|
"\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -91,23 +97,24 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 13,
|
"execution_count": 3,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# create objects\n",
|
"# create objects\n",
|
||||||
"\n",
|
"\n",
|
||||||
"V = Ausgleichsbecken_class(area_base,area_outflux,critical_level_low,critical_level_high,simulation_timestep)\n",
|
"V = Ausgleichsbecken_class(area_base,area_outflux,critical_level_low,critical_level_high,simulation_timestep)\n",
|
||||||
"V.set_initial_level(initial_level) \n",
|
"V.set_steady_state(initial_influx,initial_level,initial_pressure_unit,conversion_pressure_unit)\n",
|
||||||
"V.set_influx(initial_influx)\n",
|
|
||||||
"V.set_outflux(initial_outflux)\n",
|
|
||||||
"V.set_pressure(initial_pipeline_pressure,initial_pressure_unit,conversion_pressure_unit)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n",
|
"pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n",
|
||||||
"pipe.set_pressure_propagation_velocity(c)\n",
|
"pipe.set_pressure_propagation_velocity(c)\n",
|
||||||
"pipe.set_number_of_timesteps(nt)\n",
|
"pipe.set_number_of_timesteps(nt)\n",
|
||||||
"pipe.set_initial_pressure(p_init,initial_pressure_unit,conversion_pressure_unit)\n",
|
"pipe.set_steady_state(initial_influx,V.level,pl_vec,h_vec,initial_pressure_unit,conversion_pressure_unit)\n",
|
||||||
"pipe.set_initial_flow_velocity(v_init)\n",
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"T1 = Francis_Turbine(Q_nenn,p_nenn)\n",
|
||||||
|
"T1.set_steady_state(initial_influx,pipe.p0[-1])\n",
|
||||||
|
"T1.set_closing_time(30)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# display the attributes of the created reservoir and pipeline object\n",
|
"# display the attributes of the created reservoir and pipeline object\n",
|
||||||
"# V.get_info(full=True)\n",
|
"# V.get_info(full=True)\n",
|
||||||
@@ -116,15 +123,15 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 4,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# initialization for timeloop\n",
|
"# initialization for timeloop\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
|
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
|
||||||
"v_old = v_init.copy()\n",
|
"v_old = pipe.v0.copy()\n",
|
||||||
"p_old = p_init.copy()\n",
|
"p_old = pipe.p0.copy()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
|
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
|
||||||
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n",
|
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n",
|
||||||
@@ -134,36 +141,26 @@
|
|||||||
"v_boundary_tur = np.empty_like(t_vec)\n",
|
"v_boundary_tur = np.empty_like(t_vec)\n",
|
||||||
"p_boundary_res = np.empty_like(t_vec)\n",
|
"p_boundary_res = np.empty_like(t_vec)\n",
|
||||||
"p_boundary_tur = np.empty_like(t_vec)\n",
|
"p_boundary_tur = np.empty_like(t_vec)\n",
|
||||||
"influx_vec = np.empty_like(t_vec)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
|
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
|
||||||
"level_vec = np.full(nt+1,initial_level) # level at the end of each pipeline timestep\n",
|
"level_vec = np.full(nt+1,V.level) # level at the end of each pipeline timestep\n",
|
||||||
"level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
|
"level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# set the boudary conditions for the first timestep\n",
|
"# set the boundary conditions for the first timestep\n",
|
||||||
"v_boundary_res[0] = v_old[0]\n",
|
"v_boundary_res[0] = v_old[0]\n",
|
||||||
|
"v_boundary_tur[0] = v_old[-1] \n",
|
||||||
"p_boundary_res[0] = p_old[0]\n",
|
"p_boundary_res[0] = p_old[0]\n",
|
||||||
"p_boundary_tur[0] = p_old[-1]\n",
|
"p_boundary_tur[0] = p_old[-1]\n",
|
||||||
"\n",
|
"\n",
|
||||||
"v_boundary_tur[:] = v_old[0] \n",
|
"LA_soll_vec = np.full_like(t_vec,T1.LA)\n",
|
||||||
"v_boundary_tur[1:] = 0 # instantaneous closing\n",
|
"LA_soll_vec[1500:]= 0\n",
|
||||||
"\n",
|
"\n",
|
||||||
"const = int(np.min([1000,round(nt/1.25)])) \n",
|
|
||||||
"# # v_boundary_tur[0:const] = np.linspace(v_old[-1],0,const) # linear closing\n",
|
|
||||||
"v_boundary_tur[0:const] = v_old[1]*np.cos(t_vec[0:const]*2*np.pi)**2 # oscillating\n",
|
|
||||||
"\n",
|
|
||||||
"influx_vec[0] = initial_influx # instantaneous closing\n",
|
|
||||||
"influx_vec[1:] = initial_influx # instantaneous closing\n",
|
|
||||||
"\n",
|
|
||||||
"const2 = int(np.min([1000,round(nt/1.25)])) \n",
|
|
||||||
"# influx_vec[0:const2] = np.linspace(v_old[-1],0,const2) # linear closing\n",
|
|
||||||
"# influx_vec[0:const2] = initial_influx*np.cos(t_vec[0:const2]*2*np.pi)**2 # oscillating\n",
|
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 15,
|
"execution_count": 5,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -191,8 +188,15 @@
|
|||||||
"# axs1[2].autoscale()\n",
|
"# axs1[2].autoscale()\n",
|
||||||
"fig1.tight_layout()\n",
|
"fig1.tight_layout()\n",
|
||||||
"fig1.show()\n",
|
"fig1.show()\n",
|
||||||
"plt.pause(1)\n",
|
"plt.pause(1)\n"
|
||||||
"\n",
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
"# loop through time steps of the pipeline\n",
|
"# loop through time steps of the pipeline\n",
|
||||||
"for it_pipe in range(1,pipe.nt+1):\n",
|
"for it_pipe in range(1,pipe.nt+1):\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -200,7 +204,6 @@
|
|||||||
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
||||||
" V.pressure = p_old[0]\n",
|
" V.pressure = p_old[0]\n",
|
||||||
" V.outflux_vel = v_old[0]\n",
|
" V.outflux_vel = v_old[0]\n",
|
||||||
" V.influx = influx_vec[it_pipe]\n",
|
|
||||||
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
|
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
|
||||||
" for it_res in range(nt_eRK4):\n",
|
" for it_res in range(nt_eRK4):\n",
|
||||||
" V.e_RK_4() # call e-RK4 to update outflux\n",
|
" V.e_RK_4() # call e-RK4 to update outflux\n",
|
||||||
@@ -208,14 +211,18 @@
|
|||||||
" V.set_volume() # update volume in reservoir\n",
|
" V.set_volume() # update volume in reservoir\n",
|
||||||
" level_vec_2[it_res] = V.level # save for plotting\n",
|
" level_vec_2[it_res] = V.level # save for plotting\n",
|
||||||
" if (V.level < critical_level_low) or (V.level > critical_level_high): # make sure to never exceed critical levels\n",
|
" if (V.level < critical_level_low) or (V.level > critical_level_high): # make sure to never exceed critical levels\n",
|
||||||
|
" i_max = it_pipe # for plotting only calculated values\n",
|
||||||
" break \n",
|
" break \n",
|
||||||
" level_vec[it_pipe] = V.level \n",
|
" level_vec[it_pipe] = V.level \n",
|
||||||
"\n",
|
"\n",
|
||||||
" # set boundary conditions for the next timestep of the characteristic method\n",
|
" # set boundary conditions for the next timestep of the characteristic method\n",
|
||||||
" p_boundary_res[it_pipe] = rho*g*V.level-v_old[1]**2*rho/2\n",
|
" p_boundary_res[it_pipe] = rho*g*V.level-V.outflux_vel**2*rho/2\n",
|
||||||
" v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n",
|
" v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n",
|
||||||
" +dt*g*np.sin(alpha)\n",
|
" +dt*g*np.sin(alpha)\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
" T1.change_LA(LA_soll_vec[it_pipe],dt)\n",
|
||||||
|
" v_boundary_tur[it_pipe] = 1/A_pipe*T1.get_Q(p_old[-1])\n",
|
||||||
|
"\n",
|
||||||
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
|
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
|
||||||
" pipe.set_boundary_conditions_next_timestep(v_boundary_res[it_pipe],p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
|
" pipe.set_boundary_conditions_next_timestep(v_boundary_res[it_pipe],p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
|
||||||
" p_boundary_tur[it_pipe] = pipe.p_boundary_tur\n",
|
" p_boundary_tur[it_pipe] = pipe.p_boundary_tur\n",
|
||||||
@@ -236,7 +243,7 @@
|
|||||||
" fig1.canvas.draw()\n",
|
" fig1.canvas.draw()\n",
|
||||||
" fig1.tight_layout()\n",
|
" fig1.tight_layout()\n",
|
||||||
" fig1.show()\n",
|
" fig1.show()\n",
|
||||||
" plt.pause(0.00001) \n",
|
" plt.pause(0.1) \n",
|
||||||
"\n",
|
"\n",
|
||||||
" # prepare for next loop\n",
|
" # prepare for next loop\n",
|
||||||
" p_old = pipe.p_old\n",
|
" p_old = pipe.p_old\n",
|
||||||
@@ -248,7 +255,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 16,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
324
Untertweng_mit_Pegelregler.ipynb
Normal file
324
Untertweng_mit_Pegelregler.ipynb
Normal file
@@ -0,0 +1,324 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 22,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import matplotlib.pyplot as plt\n",
|
||||||
|
"\n",
|
||||||
|
"from functions.pressure_conversion import pressure_conversion\n",
|
||||||
|
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
|
||||||
|
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
|
||||||
|
"from Turbinen.Turbinen_class_file import Francis_Turbine\n",
|
||||||
|
"from Regler.Regler_class_file import PI_controller_class"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 23,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#define constants\n",
|
||||||
|
"\n",
|
||||||
|
"#Turbine\n",
|
||||||
|
"Q_nenn = 0.85\n",
|
||||||
|
"p_nenn,_ = pressure_conversion(10.6,'bar','Pa')\n",
|
||||||
|
"\n",
|
||||||
|
"# physics\n",
|
||||||
|
"g = 9.81 # gravitational acceleration [m/s²]\n",
|
||||||
|
"rho = 1000. # density of water [kg/m³]\n",
|
||||||
|
"\n",
|
||||||
|
"# pipeline\n",
|
||||||
|
"L = 535.+478. # length of pipeline [m]\n",
|
||||||
|
"D = 0.9 # pipe diameter [m]\n",
|
||||||
|
"A_pipe = D**2/4*np.pi # pipeline area\n",
|
||||||
|
"h_pipe = 105 # hydraulic head without reservoir [m] \n",
|
||||||
|
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
|
||||||
|
"n = 50 # number of pipe segments in discretization\n",
|
||||||
|
"f_D = 0.014 # Darcy friction factor\n",
|
||||||
|
"c = 500. # propagation velocity of the pressure wave [m/s]\n",
|
||||||
|
"# consider prescribing a total simulation time and deducting the number of timesteps from that\n",
|
||||||
|
"nt = 1500 # number of time steps after initial conditions\n",
|
||||||
|
"\n",
|
||||||
|
"# derivatives of the pipeline constants\n",
|
||||||
|
"dx = L/n # length of each pipe segment\n",
|
||||||
|
"dt = dx/c # timestep according to method of characterisitics\n",
|
||||||
|
"nn = n+1 # number of nodes\n",
|
||||||
|
"initial_level = 8. # water level in upstream reservoir [m]\n",
|
||||||
|
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
||||||
|
"t_vec = np.arange(0,nt+1)*dt # time vector\n",
|
||||||
|
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node \n",
|
||||||
|
"\n",
|
||||||
|
"# reservoir\n",
|
||||||
|
"# replace influx by vector\n",
|
||||||
|
"initial_influx = Q_nenn/1.1 # initial influx of volume to the reservoir [m³/s]\n",
|
||||||
|
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
||||||
|
"conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
|
||||||
|
"area_base = 74. # total base are of the cuboid reservoir [m²] \n",
|
||||||
|
"area_outflux = A_pipe # outlfux area of the reservoir, given by pipeline area [m²]\n",
|
||||||
|
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
|
||||||
|
"critical_level_high = np.inf # for yet-to-be-implemented warnings[m]\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"# define controller constants\n",
|
||||||
|
"target_level = initial_level # m\n",
|
||||||
|
"Kp = 2\n",
|
||||||
|
"Ti = 10\n",
|
||||||
|
"deadband_range = 0.05 # m\n",
|
||||||
|
"\n",
|
||||||
|
"# make sure e-RK4 method of reservoir has a small enough timestep to avoid runaway numerical error\n",
|
||||||
|
"nt_eRK4 = 1000 # number of simulation steps of reservoir in between timesteps of pipeline \n",
|
||||||
|
"simulation_timestep = dt/nt_eRK4\n",
|
||||||
|
"\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Ideas for checks after constant definitions: \n",
|
||||||
|
"\n",
|
||||||
|
"- Check that the initial pressure is not negative:\n",
|
||||||
|
" - may happen, if there is too little hydraulic head to create the initial flow conditions with the given friction\n",
|
||||||
|
"<br>\n",
|
||||||
|
"<br>\n",
|
||||||
|
"- plausbility checks?\n",
|
||||||
|
" - area > area_outflux ?\n",
|
||||||
|
" - propable ranges for parameters?\n",
|
||||||
|
" - angle and height/length fit together?\n",
|
||||||
|
" "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 24,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# create objects\n",
|
||||||
|
"\n",
|
||||||
|
"V = Ausgleichsbecken_class(area_base,area_outflux,critical_level_low,critical_level_high,simulation_timestep)\n",
|
||||||
|
"V.set_steady_state(initial_influx,initial_level,initial_pressure_unit,conversion_pressure_unit)\n",
|
||||||
|
"\n",
|
||||||
|
"pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n",
|
||||||
|
"pipe.set_pressure_propagation_velocity(c)\n",
|
||||||
|
"pipe.set_number_of_timesteps(nt)\n",
|
||||||
|
"pipe.set_steady_state(initial_influx,V.level,pl_vec,h_vec,initial_pressure_unit,conversion_pressure_unit)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"T1 = Francis_Turbine(Q_nenn,p_nenn)\n",
|
||||||
|
"T1.set_steady_state(initial_influx,pipe.p0[-1])\n",
|
||||||
|
"T1.set_closing_time(5)\n",
|
||||||
|
"\n",
|
||||||
|
"Pegelregler = PI_controller_class(target_level,deadband_range,Kp,Ti,dt)\n",
|
||||||
|
"\n",
|
||||||
|
"# display the attributes of the created reservoir and pipeline object\n",
|
||||||
|
"# V.get_info(full=True)\n",
|
||||||
|
"# pipe.get_info()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 25,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# initialization for timeloop\n",
|
||||||
|
"\n",
|
||||||
|
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
|
||||||
|
"v_old = pipe.v0.copy()\n",
|
||||||
|
"p_old = pipe.p0.copy()\n",
|
||||||
|
"\n",
|
||||||
|
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
|
||||||
|
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n",
|
||||||
|
" # through the time evolution of the reservoir respectively \n",
|
||||||
|
" # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n",
|
||||||
|
"v_boundary_res = np.empty_like(t_vec)\n",
|
||||||
|
"v_boundary_tur = np.empty_like(t_vec)\n",
|
||||||
|
"p_boundary_res = np.empty_like(t_vec)\n",
|
||||||
|
"p_boundary_tur = np.empty_like(t_vec)\n",
|
||||||
|
"influx_vec = np.empty_like(t_vec)\n",
|
||||||
|
"\n",
|
||||||
|
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
|
||||||
|
"level_vec = np.full(nt+1,V.level) # level at the end of each pipeline timestep\n",
|
||||||
|
"level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
|
||||||
|
"\n",
|
||||||
|
"# set the boundary conditions for the first timestep\n",
|
||||||
|
"v_boundary_res[0] = v_old[0]\n",
|
||||||
|
"v_boundary_tur[0] = v_old[-1] \n",
|
||||||
|
"p_boundary_res[0] = p_old[0]\n",
|
||||||
|
"p_boundary_tur[0] = p_old[-1]\n",
|
||||||
|
"\n",
|
||||||
|
"LA_soll_vec = np.full_like(t_vec,T1.LA)\n",
|
||||||
|
"Pegelregler.control_variable = T1.LA\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 26,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%matplotlib qt5\n",
|
||||||
|
"# time loop\n",
|
||||||
|
"\n",
|
||||||
|
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
|
||||||
|
"fig1,axs1 = plt.subplots(2,1)\n",
|
||||||
|
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
|
||||||
|
"axs1[0].set_title('Pressure distribution in pipeline')\n",
|
||||||
|
"axs1[1].set_title('Velocity distribution in pipeline')\n",
|
||||||
|
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||||
|
"axs1[0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
|
||||||
|
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||||
|
"axs1[1].set_ylabel(r'$v$ [$\\mathrm{m} / \\mathrm{s}$]')\n",
|
||||||
|
"lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit)[0],marker='.')\n",
|
||||||
|
"lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.')\n",
|
||||||
|
"axs1[0].autoscale()\n",
|
||||||
|
"axs1[1].set_ylim([0,2])\n",
|
||||||
|
"# displaying the reservoir level within each pipeline timestep\n",
|
||||||
|
"# axs1[2].set_title('Level reservoir')\n",
|
||||||
|
"# axs1[2].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"# axs1[2].set_ylabel(r'$h$ [m]')\n",
|
||||||
|
"# lo_02, = axs1[2].plot(level_vec_2)\n",
|
||||||
|
"# axs1[2].autoscale()\n",
|
||||||
|
"fig1.tight_layout()\n",
|
||||||
|
"fig1.show()\n",
|
||||||
|
"plt.pause(1)\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 27,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# loop through time steps of the pipeline\n",
|
||||||
|
"for it_pipe in range(1,pipe.nt+1):\n",
|
||||||
|
"\n",
|
||||||
|
" if it_pipe == 150:\n",
|
||||||
|
" V.influx = 0\n",
|
||||||
|
"\n",
|
||||||
|
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
||||||
|
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
||||||
|
" V.pressure = p_old[0]\n",
|
||||||
|
" V.outflux_vel = v_old[0]\n",
|
||||||
|
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
|
||||||
|
" for it_res in range(nt_eRK4):\n",
|
||||||
|
" V.e_RK_4() # call e-RK4 to update outflux\n",
|
||||||
|
" V.level = V.update_level(V.timestep) # \n",
|
||||||
|
" V.set_volume() # update volume in reservoir\n",
|
||||||
|
" level_vec_2[it_res] = V.level # save for plotting\n",
|
||||||
|
" if (V.level < critical_level_low) or (V.level > critical_level_high): # make sure to never exceed critical levels\n",
|
||||||
|
" break \n",
|
||||||
|
" level_vec[it_pipe] = V.level \n",
|
||||||
|
"\n",
|
||||||
|
" # set boundary conditions for the next timestep of the characteristic method\n",
|
||||||
|
" p_boundary_res[it_pipe] = rho*g*V.level-V.outflux_vel**2*rho/2\n",
|
||||||
|
" v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n",
|
||||||
|
" +dt*g*np.sin(alpha)\n",
|
||||||
|
"\n",
|
||||||
|
" LA_soll_vec[it_pipe] = Pegelregler.get_control_variable(V.level)\n",
|
||||||
|
" T1.change_LA(LA_soll_vec[it_pipe],dt)\n",
|
||||||
|
" v_boundary_tur[it_pipe] = 1/A_pipe*T1.get_Q(p_old[-1])\n",
|
||||||
|
"\n",
|
||||||
|
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
|
||||||
|
" pipe.set_boundary_conditions_next_timestep(v_boundary_res[it_pipe],p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
|
||||||
|
" p_boundary_tur[it_pipe] = pipe.p_boundary_tur\n",
|
||||||
|
"\n",
|
||||||
|
" # perform the next timestep via the characteristic method\n",
|
||||||
|
" pipe.timestep_characteristic_method()\n",
|
||||||
|
"\n",
|
||||||
|
" # plot some stuff\n",
|
||||||
|
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
|
||||||
|
" lo_00.remove()\n",
|
||||||
|
" lo_01.remove()\n",
|
||||||
|
" # lo_02.remove()\n",
|
||||||
|
" # plot new pressure and velocity distribution in the pipeline\n",
|
||||||
|
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit)[0],marker='.',c='blue')\n",
|
||||||
|
" lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n",
|
||||||
|
" # lo_02, = axs1[2].plot(level_vec_2,c='blue')\n",
|
||||||
|
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
|
||||||
|
" fig1.canvas.draw()\n",
|
||||||
|
" fig1.tight_layout()\n",
|
||||||
|
" fig1.show()\n",
|
||||||
|
" plt.pause(0.1) \n",
|
||||||
|
"\n",
|
||||||
|
" # prepare for next loop\n",
|
||||||
|
" p_old = pipe.p_old\n",
|
||||||
|
" v_old = pipe.v_old \n",
|
||||||
|
"\n",
|
||||||
|
" \n",
|
||||||
|
" "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 28,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# plot time evolution of boundary pressure and velocity as well as the reservoir level\n",
|
||||||
|
"\n",
|
||||||
|
"fig2,axs2 = plt.subplots(3,2)\n",
|
||||||
|
"axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,initial_pressure_unit, conversion_pressure_unit)[0])\n",
|
||||||
|
"axs2[0,1].plot(t_vec,v_boundary_res)\n",
|
||||||
|
"axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,initial_pressure_unit, conversion_pressure_unit)[0])\n",
|
||||||
|
"axs2[1,1].plot(t_vec,v_boundary_tur)\n",
|
||||||
|
"axs2[2,0].plot(t_vec,level_vec)\n",
|
||||||
|
"axs2[0,0].set_title('Pressure reservoir')\n",
|
||||||
|
"axs2[0,1].set_title('Velocity reservoir')\n",
|
||||||
|
"axs2[1,0].set_title('Pressure turbine')\n",
|
||||||
|
"axs2[1,1].set_title('Velocity turbine')\n",
|
||||||
|
"axs2[2,0].set_title('Level reservoir')\n",
|
||||||
|
"axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"axs2[0,0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
|
||||||
|
"axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
||||||
|
"axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"axs2[1,0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
|
||||||
|
"axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
||||||
|
"axs2[2,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||||
|
"axs2[2,0].set_ylabel(r'$h$ [m]')\n",
|
||||||
|
"axs2[2,1].axis('off')\n",
|
||||||
|
"fig2.tight_layout()\n",
|
||||||
|
"plt.show()"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3.8.13 ('DT_Slot_3')",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.13"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 4,
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
||||||
22
untertweng.txt
Normal file
22
untertweng.txt
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
L = 535 m dn 800 mm
|
||||||
|
478 m dn 1000 mm
|
||||||
|
Ersatzdurchmesser
|
||||||
|
|
||||||
|
h_pipe
|
||||||
|
|
||||||
|
h 851.78 Pegel + Leitungsgefälle
|
||||||
|
Leitungsgefälle: 113
|
||||||
|
|
||||||
|
Fläche 4.25x10.5 + 30m² = 74 m²
|
||||||
|
Pegelminimum: 851.18 m
|
||||||
|
|
||||||
|
Unterwasserpegel 738.56
|
||||||
|
Gesamtfallhöhe = 851.78-738.56
|
||||||
|
|
||||||
|
Rohrreibung: 0.014 f_D = lambda
|
||||||
|
c = 500 m/s
|
||||||
|
|
||||||
|
Q_0 = 100%*0.75+30%*0.75
|
||||||
|
Q_extrem = 30%*0.75
|
||||||
|
|
||||||
|
Q = LA*Q_nenn*sqrt(H/H_n)
|
||||||
Reference in New Issue
Block a user