further code cleanup
This commit is contained in:
@@ -1,51 +1,40 @@
|
||||
import numpy as np
|
||||
|
||||
#importing pressure conversion function
|
||||
import sys
|
||||
import os
|
||||
current = os.path.dirname(os.path.realpath(__file__))
|
||||
parent = os.path.dirname(current)
|
||||
sys.path.append(parent)
|
||||
from functions.pressure_conversion import pressure_conversion
|
||||
|
||||
|
||||
|
||||
|
||||
class Druckrohrleitung_class:
|
||||
# units
|
||||
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
|
||||
angle_unit = 'rad'
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
length_unit = 'm'
|
||||
time_unit = 's'
|
||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
|
||||
angle_unit = 'rad'
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
length_unit = 'm'
|
||||
pressure_unit = 'Pa'
|
||||
time_unit = 's'
|
||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
|
||||
acceleration_unit_print = 'm/s²'
|
||||
angle_unit_print = 'rad'
|
||||
area_unit_print = 'm²'
|
||||
density_unit_print = 'kg/m³'
|
||||
flux_unit_print = 'm³/s'
|
||||
length_unit_print = 'm'
|
||||
time_unit_print = 's'
|
||||
velocity_unit_print = 'm/s' # for flux and pressure propagation
|
||||
volume_unit_print = 'm³'
|
||||
|
||||
acceleration_unit_print = 'm/s²'
|
||||
angle_unit_print = 'rad'
|
||||
area_unit_print = 'm²'
|
||||
density_unit_print = 'kg/m³'
|
||||
flux_unit_print = 'm³/s'
|
||||
length_unit_print = 'm'
|
||||
time_unit_print = 's'
|
||||
velocity_unit_print = 'm/s' # for flux and pressure propagation
|
||||
volume_unit_print = 'm³'
|
||||
|
||||
# init
|
||||
def __init__(self,total_length,diameter,number_segments,pipeline_angle,Darcy_friction_factor,rho=1000,g=9.81):
|
||||
self.length = total_length
|
||||
self.dia = diameter
|
||||
self.n_seg = number_segments
|
||||
self.angle = pipeline_angle
|
||||
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
|
||||
self.rho = rho
|
||||
self.g = g
|
||||
self.length = total_length # total length of the pipeline
|
||||
self.dia = diameter # diameter of the pipeline
|
||||
self.n_seg = number_segments # number of segments for the method of characteristics
|
||||
self.angle = pipeline_angle # angle of the pipeline
|
||||
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
|
||||
self.density = rho # density of the liquid in the pipeline
|
||||
self.g = g # gravitational acceleration
|
||||
|
||||
self.dx = total_length/number_segments
|
||||
self.l_vec = np.arange(0,(number_segments+1)*self.dx,self.dx)
|
||||
self.dx = total_length/number_segments # length of each segment
|
||||
self.l_vec = np.arange(0,(number_segments+1),1)*self.dx # vector giving the distance from each node to the start of the pipeline
|
||||
|
||||
# initialize for get_info method
|
||||
self.c = '--'
|
||||
@@ -53,32 +42,32 @@ class Druckrohrleitung_class:
|
||||
|
||||
# setter
|
||||
def set_pressure_propagation_velocity(self,c):
|
||||
self.c = c
|
||||
self.dt = self.dx/c
|
||||
self.c = c # propagation velocity of the pressure wave
|
||||
self.dt = self.dx/c # timestep derived from c, demanded by the method of characteristics
|
||||
|
||||
def set_number_of_timesteps(self,number_timesteps):
|
||||
self.nt = number_timesteps
|
||||
self.nt = number_timesteps # number of timesteps
|
||||
if self.c == '--':
|
||||
raise Exception('Please set the pressure propagation velocity before setting the number of timesteps.')
|
||||
else:
|
||||
self.t_vec = np.arange(0,self.nt*self.dt,self.dt)
|
||||
|
||||
def set_initial_pressure(self,pressure,pressure_unit,display_pressure_unit):
|
||||
if np.size(pressure) == 1:
|
||||
def set_initial_pressure(self,pressure):
|
||||
# initialize the pressure distribution in the pipeline
|
||||
if np.size(pressure) == 1:
|
||||
self.p0 = np.full_like(self.l_vec,pressure)
|
||||
elif np.size(pressure) == np.size(self.l_vec):
|
||||
self.p0 = pressure
|
||||
else:
|
||||
raise Exception('Unable to assign initial pressure. Input has to be of size 1 or' + np.size(self.l_vec))
|
||||
self.pressure_unit = pressure_unit
|
||||
self.pressure_unit_print = display_pressure_unit
|
||||
|
||||
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
|
||||
self.p_old = self.p0.copy()
|
||||
self.p = np.empty_like(self.p_old)
|
||||
self.p_old = self.p0.copy()
|
||||
self.p = self.p0.copy()
|
||||
|
||||
def set_initial_flow_velocity(self,velocity):
|
||||
if np.size(velocity) == 1:
|
||||
# initialize the velocity distribution in the pipeline
|
||||
if np.size(velocity) == 1:
|
||||
self.v0 = np.full_like(self.l_vec,velocity)
|
||||
elif np.size(velocity) == np.size(self.l_vec):
|
||||
self.v0 = velocity
|
||||
@@ -86,35 +75,51 @@ class Druckrohrleitung_class:
|
||||
raise Exception('Unable to assign initial velocity. Input has to be of size 1 or' + np.size(self.l_vec))
|
||||
|
||||
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
|
||||
self.v_old = self.v0.copy()
|
||||
self.v = np.empty_like(self.v_old)
|
||||
self.v_old = self.v0.copy()
|
||||
self.v = self.v0.copy()
|
||||
|
||||
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine):
|
||||
rho = self.rho
|
||||
def set_boundary_conditions_next_timestep(self,p_reservoir,v_turbine):
|
||||
# derived from the method of characteristics, one can set the boundary conditions for the pressures and flow velocities at the reservoir and the turbine
|
||||
# the boundary velocity at the turbine is specified by the flux through the turbine or an external boundary condition
|
||||
# the pressure at the turbine will be calculated using the forward characteristic
|
||||
# the boundary pressure at the reservoir is specified by the level in the reservoir of an external boundary condition
|
||||
# the velocity at the reservoir will be calculated using the backward characteristic
|
||||
|
||||
# constants for a cleaner formula
|
||||
rho = self.density
|
||||
c = self.c
|
||||
f_D = self.f_D
|
||||
dt = self.dt
|
||||
D = self.dia
|
||||
g = self.g
|
||||
alpha = self.angle
|
||||
p_old = self.p_old[-2] # @ second to last node (the one before the turbine)
|
||||
v_old = self.v_old[-2] # @ second to last node (the one before the turbine)
|
||||
self.v_boundary_res = v_reservoir # at new timestep
|
||||
p_old_tur = self.p_old[-2] # @ second to last node (the one before the turbine)
|
||||
v_old_tur = self.v_old[-2] # @ second to last node (the one before the turbine)
|
||||
p_old_res = self.p_old[1] # @ second node (the one after the reservoir)
|
||||
v_old_res = self.v_old[1] # @ second node (the one after the reservoir)
|
||||
# set the boundary conditions derived from reservoir and turbine
|
||||
self.v_boundary_tur = v_turbine # at new timestep
|
||||
self.p_boundary_res = p_reservoir
|
||||
self.p_boundary_tur = p_old-rho*c*(v_turbine-v_old)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v_old)*v_old
|
||||
self.p_boundary_res = p_reservoir # at new timestep
|
||||
# calculate the missing boundary conditions
|
||||
self.v_boundary_res = v_old_res+1/(rho*c)*(p_reservoir-p_old_res)+dt*g*np.sin(alpha)-f_D*dt/(2*D)*abs(v_old_res)*v_old_res
|
||||
self.p_boundary_tur = p_old_tur-rho*c*(v_turbine-v_old_tur)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v_old_tur)*v_old_tur
|
||||
|
||||
# write boundary conditions to the velocity/pressure vectors of the next timestep
|
||||
self.v[0] = self.v_boundary_res.copy()
|
||||
self.v[-1] = self.v_boundary_tur.copy()
|
||||
self.p[0] = self.p_boundary_res.copy()
|
||||
self.p[-1] = self.p_boundary_tur.copy()
|
||||
|
||||
|
||||
def set_steady_state(self,ss_flux,ss_level_reservoir,pl_vec,h_vec,pressure_unit,display_pressure_unit):
|
||||
def set_steady_state(self,ss_flux,ss_level_reservoir,pl_vec,h_vec):
|
||||
# set the pressure and velocity distributions, that allow a constant flow of water from the (steady-state) reservoir to the (steady-state) turbine
|
||||
# the flow velocity is given by the constant flow through the pipe
|
||||
ss_v0 = np.full(self.n_seg+1,ss_flux/(self.dia**2/4*np.pi))
|
||||
ss_pressure = (self.rho*self.g*(ss_level_reservoir+h_vec)-ss_v0**2*self.rho/2)-(self.f_D*pl_vec/self.dia*self.rho/2*ss_v0**2)
|
||||
# the static pressure is given by the hydrostatic pressure, corrected for friction losses and dynamic pressure
|
||||
ss_pressure = (self.density*self.g*(ss_level_reservoir+h_vec)-ss_v0**2*self.density/2)-(self.f_D*pl_vec/self.dia*self.density/2*ss_v0**2)
|
||||
|
||||
self.set_initial_flow_velocity(ss_v0)
|
||||
self.set_initial_pressure(ss_pressure,pressure_unit,display_pressure_unit)
|
||||
self.set_initial_pressure(ss_pressure)
|
||||
|
||||
# getter
|
||||
def get_info(self):
|
||||
@@ -142,30 +147,27 @@ class Druckrohrleitung_class:
|
||||
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
|
||||
|
||||
print(print_str)
|
||||
|
||||
|
||||
def get_boundary_conditions_next_timestep(self):
|
||||
print('The pressure at the reservoir for the next timestep is', '\n', \
|
||||
pressure_conversion(self.p_boundary_res,self.pressure_unit,self.pressure_unit_print), '\n', \
|
||||
'The velocity at the reservoir for the next timestep is', '\n', \
|
||||
self.v_boundary_res, self.velocity_unit_print, '\n', \
|
||||
'The pressure at the turbine for the next timestep is', '\n', \
|
||||
pressure_conversion(self.p_boundary_tur,self.pressure_unit,self.pressure_unit_print), '\n', \
|
||||
'The velocity at the turbine for the next timestep is', '\n', \
|
||||
self.v_boundary_tur, self.velocity_unit_print)
|
||||
def get_current_pressure_distribution(self):
|
||||
return self.p
|
||||
|
||||
def get_current_velocity_distribution(self):
|
||||
return self.v
|
||||
|
||||
def timestep_characteristic_method(self):
|
||||
#number of nodes
|
||||
nn = self.n_seg+1
|
||||
rho = self.rho
|
||||
c = self.c
|
||||
f_D = self.f_D
|
||||
dt = self.dt
|
||||
D = self.dia
|
||||
g = self.g
|
||||
alpha = self.angle
|
||||
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
|
||||
# they are set with the .set_boundary_conditions_next_timestep() method beforehand
|
||||
|
||||
nn = self.n_seg+1 # number of nodes
|
||||
rho = self.density # density of liquid
|
||||
c = self.c # pressure propagation velocity
|
||||
f_D = self.f_D # Darcy friction coefficient
|
||||
dt = self.dt # timestep
|
||||
D = self.dia # pipeline diametet
|
||||
g = self.g # graviational acceleration
|
||||
alpha = self.angle # pipeline angle
|
||||
|
||||
# Vectorize this loop?
|
||||
for i in range(1,nn-1):
|
||||
self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \
|
||||
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1])
|
||||
@@ -173,5 +175,8 @@ class Druckrohrleitung_class:
|
||||
self.p[i] = 0.5*(self.p_old[i+1]+self.p_old[i-1]) - 0.5*rho*c*(self.v_old[i+1]-self.v_old[i-1]) \
|
||||
+f_D*rho*c*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]-abs(self.v_old[i-1])*self.v_old[i-1])
|
||||
|
||||
# prepare for next call
|
||||
# use .copy() to write data to another memory location and avoid the usual python reference pointer
|
||||
# else one can overwrite data by accidient and change two variables at once without noticing
|
||||
self.p_old = self.p.copy()
|
||||
self.v_old = self.v.copy()
|
||||
|
||||
Reference in New Issue
Block a user