Files
Python-DT_Slot_3/Regler/Pegelregler_test.ipynb

242 lines
10 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from Regler_class_file import PI_controller_class\n",
"\n",
"#importing Druckrohrleitung\n",
"import sys\n",
"import os\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# define constants\n",
"\n",
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 1000. # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
"\n",
"\n",
" # for Turbine\n",
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"Tur_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
"\n",
" # for pipeline\n",
"Pip_length = (535.+478.) # [m] length of pipeline\n",
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.014 # [-] Darcy friction factor\n",
"Pip_pw_vel = 500. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
" # derivatives of the pipeline constants\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
"\n",
" # for reservoir\n",
"Res_area_base = 10. # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
"Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n",
"Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n",
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"offset_pressure = pressure_conversion(Pip_head,'mws',pUnit_calc)\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# downstream turbine\n",
"turbine = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
"turbine.set_steady_state(flux_init,reservoir.get_current_pressure()+offset_pressure)\n",
"\n",
"\n",
"# level controll\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(turbine.get_current_LA(),display_warning=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"level_vec = np.zeros_like(t_vec)\n",
"level_vec[0] = level_init\n",
"LA_ist_vec = np.zeros_like(t_vec)\n",
"LA_ist_vec[0] = turbine.get_current_LA()\n",
"LA_soll_vec = np.zeros_like(t_vec)\n",
"LA_soll_vec[0] = turbine.get_current_LA()\n",
"Q_vec = np.zeros_like(t_vec)\n",
"Q_vec[0] = turbine.get_current_Q()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0\n",
"40.52\n",
"81.04\n",
"121.56\n",
"162.08\n",
"202.6\n",
"243.12\n",
"283.64\n",
"324.16\n",
"364.68\n",
"405.2\n",
"445.72\n",
"486.24\n",
"526.76\n",
"567.28\n"
]
}
],
"source": [
"# time loop\n",
"\n",
"for i in range(nt+1):\n",
"\n",
" if np.mod(i,1e3) == 0:\n",
" print(t_vec[i])\n",
"\n",
" if i > 0.1*(nt+1):\n",
" reservoir.set_influx(0.)\n",
"\n",
" p = reservoir.get_current_pressure()\n",
" level_control.update_control_variable(reservoir.level)\n",
" LA_soll = level_control.get_current_control_variable()\n",
" turbine.update_LA(LA_soll)\n",
" turbine.set_pressure(p+offset_pressure)\n",
" LA_soll_vec[i] = LA_soll\n",
" LA_ist_vec[i] = turbine.get_current_LA()\n",
" Q_vec[i] = turbine.get_current_Q()\n",
"\n",
" \n",
" reservoir.set_outflux(Q_vec[i],display_warning=False)\n",
"\n",
" for it_res in range(Res_nt):\n",
" reservoir.timestep_reservoir_evolution() \n",
" level_vec[i] = reservoir.get_current_level()\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"# time loop\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"axs1[0].set_title('Level')\n",
"axs1[0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[0].set_ylabel(r'$h$ [$\\mathrm{m}$]')\n",
"axs1[0].plot(t_vec,level_vec)\n",
"axs1[0].set_ylim([0*level_init,1.5*level_init])\n",
"axs1[1].set_title('Flux')\n",
"axs1[1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m} / \\mathrm{s}^3$]')\n",
"axs1[1].plot(t_vec,Q_vec)\n",
"axs1[1].set_ylim([0,2*flux_init])\n",
"axs1[2].set_title('LA')\n",
"axs1[2].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[2].set_ylabel(r'$LA$ [%]')\n",
"axs1[2].plot(t_vec,LA_soll_vec)\n",
"axs1[2].plot(t_vec,LA_ist_vec)\n",
"axs1[2].set_ylim([0,1])\n",
"fig1.tight_layout()\n",
"fig1.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}