68 lines
2.1 KiB
Python
68 lines
2.1 KiB
Python
import numpy as np
|
|
|
|
def Volume_trend(influx, outflux, timestep=1, V_0=0):
|
|
'''
|
|
Returns the trend and the volume and the final volume, defined
|
|
by influx and outflux patterns. The optional parameter timestep
|
|
defines the time increment over which the fluxes are changing.
|
|
'''
|
|
net_flux = influx-outflux
|
|
delta_V = net_flux*timestep
|
|
V_trend = V_0+np.cumsum(delta_V)
|
|
V_end = V_trend[-1]
|
|
return V_end, V_trend
|
|
|
|
def Height_trend(V_trend, area=1, h_crit_low=-np.inf, h_crit_high=np.inf):
|
|
'''
|
|
Returns the trend and the height and the final height, defined
|
|
by influx and outflux patterns as well as the crosssection area.
|
|
The optional parameters h_crit_low/high indicate limits that the height
|
|
should never exceed. If this occures, TRUE is returned in the corresponding
|
|
h_crit_flag.
|
|
'''
|
|
h_trend = V_trend/area
|
|
h_crit_flag_low = np.any(h_trend <= h_crit_low)
|
|
h_crit_flag_high = np.any(h_trend >= h_crit_high)
|
|
h_end = h_trend[-1]
|
|
return h_trend, h_end, h_crit_flag_low, h_crit_flag_high
|
|
|
|
def get_h_halfstep(initial_height, influx, outflux, timestep, area):
|
|
h0 = initial_height
|
|
Q_in = influx
|
|
Q_out = outflux
|
|
dt = timestep
|
|
A = area
|
|
|
|
h_halfstep = h0+1/A*(Q_in-Q_out)*dt/2
|
|
|
|
def get_p_halfstep(p0, p1):
|
|
p_halfstep = (p0+p1)/2
|
|
|
|
def FODE_function(x, h, alpha, p, rho=1000, g=9.81):
|
|
f = x**2/h*alpha+g+p/(rho*h)
|
|
return f
|
|
|
|
|
|
def e_RK_4(yn, h, dt, Q0, Q1, A0, A1, p0, p1):
|
|
alpha = (A1/A0-1)
|
|
|
|
h_hs = get_h_halfstep(h, Q0, Q1, dt, A0)
|
|
p_hs = get_p_halfstep(p0, p1)
|
|
Y1 = yn
|
|
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, p0)
|
|
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
|
|
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
|
|
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
|
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
|
|
|
|
|
|
|
|
|
## testing
|
|
# if __name__ == "__main__":
|
|
# influx = np.full([1, 100], 6)
|
|
# outflux = np.full_like(influx, 4)
|
|
# V_end, V_trend = Volume_trend(influx, outflux, timestep=0.5, V_0 = 100)
|
|
# print(V_end)
|
|
# print(V_trend)
|