87 lines
3.3 KiB
Python
87 lines
3.3 KiB
Python
from Ausgleichsbecken import FODE_function, get_h_halfstep, get_p_halfstep
|
|
from functions.pressure_conversion import pressure_conversion
|
|
class Ausgleichsbecken_class:
|
|
# units
|
|
area_unit = r'$\mathrm{m}^2$'
|
|
area_outflux_unit = r'$\mathrm{m}^2$'
|
|
level_unit = 'm'
|
|
volume_unit = r'$\mathrm{m}^3$'
|
|
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
|
time_unit = 's'
|
|
pressure_unit = 'Pa'
|
|
|
|
# init
|
|
def __init__(self,area,outflux_area,level_min,level_max,timestep = 1):
|
|
self.area = area # base area of the rectangular structure
|
|
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
|
self.level_min = level_min # lowest allowed water level
|
|
self.level_max = level_max # highest allowed water level
|
|
self.timestep = timestep # timestep of the simulation
|
|
|
|
# setter
|
|
def set_volume(self):
|
|
self.volume = self.level*self.area
|
|
|
|
def set_initial_level(self,initial_level):
|
|
self.level = initial_level
|
|
self.set_volume()
|
|
|
|
def set_influx(self,influx):
|
|
self.influx = influx
|
|
|
|
def set_outflux(self,outflux):
|
|
self.outflux = outflux
|
|
|
|
# getter
|
|
def get_area(self):
|
|
print('The base area of the cuboid reservoir is', self.area, self.area_unit)
|
|
|
|
def get_outflux_area(self):
|
|
print('The outflux area from the cuboid reservoir to the pipeline is', \
|
|
self.area_outflux, self.area_outflux_unit)
|
|
|
|
def get_level(self):
|
|
print('The current level in the reservoir is', self.level , self.level_unit)
|
|
|
|
def get_crit_levels(self):
|
|
print('The critical water levels in the reservoir are: \n',\
|
|
' Minimum:', self.level_min , self.level_unit , '\n',\
|
|
' Maximum:', self.level_max , self.level_unit )
|
|
|
|
def get_volume(self):
|
|
print('The current water volume in the reservoir is', self.volume, self.volume_unit)
|
|
|
|
def get_timestep(self):
|
|
print('The timestep for the simulation is' , self.timestep, self.time_unit)
|
|
|
|
def get_influx(self):
|
|
print('The current influx is', self.influx, self.flux_unit)
|
|
|
|
def get_outflux(self):
|
|
print('The current outflux is', self.outflux, self.flux_unit)
|
|
|
|
# methods
|
|
def update_level(self,timestep):
|
|
net_flux = self.influx-self.outflux
|
|
delta_V = net_flux*timestep
|
|
new_level = (self.volume+delta_V)/self.area
|
|
return new_level
|
|
|
|
|
|
def e_RK_4(self):
|
|
# Update to deal with non constant pipeline pressure!
|
|
yn = self.outflux/self.area_outflux
|
|
h = self.level
|
|
dt = self.timestep
|
|
p,_ = pressure_conversion(self.p0,self.pressure_unit,'Pa')
|
|
p_hs,_ = pressure_conversion(self.p0,self.pressure_unit,'Pa')
|
|
alpha = (self.area_outflux/self.area-1)
|
|
h_hs = self.update_level(dt/2)
|
|
Y1 = yn
|
|
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, self.p0)
|
|
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
|
|
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
|
|
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
|
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
|
|
|
self.outflux = ynp1*self.area_outflux |