consolidated the getter methods of the classes
This commit is contained in:
@@ -1,15 +1,18 @@
|
|||||||
|
import numpy as np
|
||||||
from Ausgleichsbecken_functions import FODE_function, get_h_halfstep, get_p_halfstep
|
from Ausgleichsbecken_functions import FODE_function, get_h_halfstep, get_p_halfstep
|
||||||
|
|
||||||
#importing pressure conversion function
|
#importing pressure conversion function
|
||||||
import sys
|
import sys
|
||||||
import os
|
import os
|
||||||
current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))
|
current = os.path.dirname(os.path.realpath(__file__))
|
||||||
parent = os.path.dirname(current)
|
parent = os.path.dirname(current)
|
||||||
sys.path.append(parent)
|
sys.path.append(parent)
|
||||||
from functions.pressure_conversion import pressure_conversion
|
from functions.pressure_conversion import pressure_conversion
|
||||||
|
|
||||||
class Ausgleichsbecken_class:
|
class Ausgleichsbecken_class:
|
||||||
# units
|
# units
|
||||||
|
# make sure that units and print units are the same
|
||||||
|
# units are used to label graphs and print units are used to have a bearable format when using pythons print()
|
||||||
area_unit = r'$\mathrm{m}^2$'
|
area_unit = r'$\mathrm{m}^2$'
|
||||||
area_outflux_unit = r'$\mathrm{m}^2$'
|
area_outflux_unit = r'$\mathrm{m}^2$'
|
||||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||||
@@ -18,13 +21,28 @@ class Ausgleichsbecken_class:
|
|||||||
time_unit = 's'
|
time_unit = 's'
|
||||||
volume_unit = r'$\mathrm{m}^3$'
|
volume_unit = r'$\mathrm{m}^3$'
|
||||||
|
|
||||||
|
area_unit_print = 'm²'
|
||||||
|
area_outflux_unit_print = 'm²'
|
||||||
|
flux_unit_print = 'm³/s'
|
||||||
|
level_unit_print = 'm'
|
||||||
|
pressure_unit_print = 'Pa'
|
||||||
|
time_unit_print = 's'
|
||||||
|
volume_unit_print = 'm³'
|
||||||
|
|
||||||
# init
|
# init
|
||||||
def __init__(self,area,outflux_area,level_min,level_max,timestep = 1):
|
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1):
|
||||||
self.area = area # base area of the rectangular structure
|
self.area = area # base area of the rectangular structure
|
||||||
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
||||||
self.level_min = level_min # lowest allowed water level
|
self.level_min = level_min # lowest allowed water level
|
||||||
self.level_max = level_max # highest allowed water level
|
self.level_max = level_max # highest allowed water level
|
||||||
self.timestep = timestep # timestep of the simulation
|
self.timestep = timestep # timestep of the simulation
|
||||||
|
|
||||||
|
# initialize for get_info
|
||||||
|
self.level = "--"
|
||||||
|
self.influx = "--"
|
||||||
|
self.outflux = "--"
|
||||||
|
self.volume = "--"
|
||||||
|
|
||||||
|
|
||||||
# setter
|
# setter
|
||||||
def set_volume(self):
|
def set_volume(self):
|
||||||
@@ -41,32 +59,35 @@ class Ausgleichsbecken_class:
|
|||||||
self.outflux = outflux
|
self.outflux = outflux
|
||||||
|
|
||||||
# getter
|
# getter
|
||||||
def get_area(self):
|
def get_info(self, full = False):
|
||||||
print('The base area of the cuboid reservoir is', self.area, self.area_unit)
|
new_line = '\n'
|
||||||
|
|
||||||
|
if full == True:
|
||||||
|
# :<10 pads the self.value to be 10 characters wide
|
||||||
|
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
|
||||||
|
f"----------------------------- {new_line}"
|
||||||
|
f"Base area = {self.area:<10} {self.area_unit_print} {new_line}"
|
||||||
|
f"Outflux area = {self.area_outflux:<10} {self.area_outflux_unit_print} {new_line}"
|
||||||
|
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
|
||||||
|
f"Critical level low = {self.level_min:<10} {self.level_unit_print} {new_line}"
|
||||||
|
f"Critical level high = {self.level_max:<10} {self.level_unit_print} {new_line}"
|
||||||
|
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
||||||
|
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
||||||
|
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
||||||
|
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
|
||||||
|
f"----------------------------- {new_line}")
|
||||||
|
else:
|
||||||
|
# :<10 pads the self.value to be 10 characters wide
|
||||||
|
print_str = (f"The current attributes are: {new_line}"
|
||||||
|
f"----------------------------- {new_line}"
|
||||||
|
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
|
||||||
|
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
||||||
|
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
||||||
|
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
||||||
|
f"----------------------------- {new_line}")
|
||||||
|
|
||||||
def get_outflux_area(self):
|
print(print_str)
|
||||||
print('The outflux area from the cuboid reservoir to the pipeline is', \
|
|
||||||
self.area_outflux, self.area_outflux_unit)
|
|
||||||
|
|
||||||
def get_level(self):
|
|
||||||
print('The current level in the reservoir is', self.level , self.level_unit)
|
|
||||||
|
|
||||||
def get_crit_levels(self):
|
|
||||||
print('The critical water levels in the reservoir are: \n',\
|
|
||||||
' Minimum:', self.level_min , self.level_unit , '\n',\
|
|
||||||
' Maximum:', self.level_max , self.level_unit )
|
|
||||||
|
|
||||||
def get_volume(self):
|
|
||||||
print('The current water volume in the reservoir is', self.volume, self.volume_unit)
|
|
||||||
|
|
||||||
def get_timestep(self):
|
|
||||||
print('The timestep for the simulation is' , self.timestep, self.time_unit)
|
|
||||||
|
|
||||||
def get_influx(self):
|
|
||||||
print('The current influx is', self.influx, self.flux_unit)
|
|
||||||
|
|
||||||
def get_outflux(self):
|
|
||||||
print('The current outflux is', self.outflux, self.flux_unit)
|
|
||||||
|
|
||||||
# methods
|
# methods
|
||||||
def update_level(self,timestep):
|
def update_level(self,timestep):
|
||||||
@@ -92,4 +113,4 @@ class Ausgleichsbecken_class:
|
|||||||
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
||||||
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
||||||
|
|
||||||
self.outflux = ynp1*self.area_outflux
|
self.outflux = ynp1*self.area_outflux
|
||||||
|
|||||||
@@ -21,6 +21,17 @@ class Druckrohrleitung_class:
|
|||||||
time_unit = 's'
|
time_unit = 's'
|
||||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
|
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
|
||||||
volume_unit = r'$\mathrm{m}^3$'
|
volume_unit = r'$\mathrm{m}^3$'
|
||||||
|
|
||||||
|
acceleration_unit_print = 'm/s²'
|
||||||
|
angle_unit_print = '°'
|
||||||
|
area_unit_print = 'm²'
|
||||||
|
density_unit_print = 'kg/m³'
|
||||||
|
flux_unit_print = 'm³/s'
|
||||||
|
length_unit_print = 'm'
|
||||||
|
pressure_unit_print = 'Pa'
|
||||||
|
time_unit_print = 's'
|
||||||
|
velocity_unit_print = 'm/s' # for flux and pressure propagation
|
||||||
|
volume_unit_print = 'm³'
|
||||||
|
|
||||||
|
|
||||||
# init
|
# init
|
||||||
@@ -36,8 +47,9 @@ class Druckrohrleitung_class:
|
|||||||
self.dx = total_length/number_segments
|
self.dx = total_length/number_segments
|
||||||
self.l_vec = np.arange(0,(number_segments+1)*self.dx,self.dx)
|
self.l_vec = np.arange(0,(number_segments+1)*self.dx,self.dx)
|
||||||
|
|
||||||
# workaround for try-except construct in set_number_of_timesteps
|
# initialize for get_info method
|
||||||
self.c = 0
|
self.c = '--'
|
||||||
|
self.dt = '--'
|
||||||
|
|
||||||
# setter
|
# setter
|
||||||
def set_pressure_propagation_velocity(self,c):
|
def set_pressure_propagation_velocity(self,c):
|
||||||
@@ -46,7 +58,7 @@ class Druckrohrleitung_class:
|
|||||||
|
|
||||||
def set_number_of_timesteps(self,number_timesteps):
|
def set_number_of_timesteps(self,number_timesteps):
|
||||||
self.nt = number_timesteps
|
self.nt = number_timesteps
|
||||||
if self.c == 0:
|
if self.c == '--':
|
||||||
raise Exception('Please set the pressure propagation velocity before setting the number of timesteps.')
|
raise Exception('Please set the pressure propagation velocity before setting the number of timesteps.')
|
||||||
else:
|
else:
|
||||||
self.t_vec = np.arange(0,self.nt*self.dt,self.dt)
|
self.t_vec = np.arange(0,self.nt*self.dt,self.dt)
|
||||||
@@ -62,7 +74,7 @@ class Druckrohrleitung_class:
|
|||||||
|
|
||||||
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
|
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
|
||||||
self.p_old = self.p0.copy()
|
self.p_old = self.p0.copy()
|
||||||
self.p_new = np.empty_like(self.p_old)
|
self.p = np.empty_like(self.p_old)
|
||||||
|
|
||||||
def set_initial_flow_velocity(self,velocity):
|
def set_initial_flow_velocity(self,velocity):
|
||||||
if np.size(velocity) == 1:
|
if np.size(velocity) == 1:
|
||||||
@@ -74,7 +86,7 @@ class Druckrohrleitung_class:
|
|||||||
|
|
||||||
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
|
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
|
||||||
self.v_old = self.v0.copy()
|
self.v_old = self.v0.copy()
|
||||||
self.v_new = np.empty_like(self.v_old)
|
self.v = np.empty_like(self.v_old)
|
||||||
|
|
||||||
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine,input_unit_pressure = 'Pa'):
|
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine,input_unit_pressure = 'Pa'):
|
||||||
rho = self.density
|
rho = self.density
|
||||||
@@ -88,53 +100,42 @@ class Druckrohrleitung_class:
|
|||||||
self.v_boundary_tur = v_turbine
|
self.v_boundary_tur = v_turbine
|
||||||
self.p_boundary_res,_ = pressure_conversion(p_reservoir,input_unit_pressure,target_unit=self.pressure_unit)
|
self.p_boundary_res,_ = pressure_conversion(p_reservoir,input_unit_pressure,target_unit=self.pressure_unit)
|
||||||
self.p_boundary_tur = p_old+rho*c*v_old-rho*c*f_D*dt/(2*D)*abs(v_old)*v_old
|
self.p_boundary_tur = p_old+rho*c*v_old-rho*c*f_D*dt/(2*D)*abs(v_old)*v_old
|
||||||
self.v_new[0] = self.v_boundary_res.copy()
|
self.v[0] = self.v_boundary_res.copy()
|
||||||
self.v_new[-1] = self.v_boundary_tur.copy()
|
self.v[-1] = self.v_boundary_tur.copy()
|
||||||
self.p_new[0] = self.p_boundary_res.copy()
|
self.p[0] = self.p_boundary_res.copy()
|
||||||
self.p_new[-1] = self.p_boundary_tur.copy()
|
self.p[-1] = self.p_boundary_tur.copy()
|
||||||
|
|
||||||
# getter
|
# getter
|
||||||
def get_pipeline_geometry(self):
|
def get_info(self):
|
||||||
print('The total length of the pipeline is', '\n', \
|
new_line = '\n'
|
||||||
self.length, self.length_unit, '\n', \
|
|
||||||
'The diameter of the pipeline is', '\n', \
|
|
||||||
self.dia, self.length_unit, '\n', \
|
|
||||||
'The pipeline is divided into', self.n_seg , 'segments of length', '\n', \
|
|
||||||
round(self.dx,1), self.length_unit, '\n', \
|
|
||||||
'The pipeline has an inclination angle of', '\n', \
|
|
||||||
self.angle, self.angle_unit)
|
|
||||||
|
|
||||||
def get_other_pipeline_info(self):
|
|
||||||
print('The Darcy-friction factor of the pipeline is', '\n', \
|
|
||||||
self.f_D, '\n', \
|
|
||||||
'The pipeline is filled with a liquid with density', '\n', \
|
|
||||||
self.density, self.density_unit, '\n', \
|
|
||||||
'The gravitational acceleration is set to', '\n', \
|
|
||||||
self.g, self.acceleration_unit)
|
|
||||||
|
|
||||||
def get_pressure_propagation_velocity(self):
|
|
||||||
print('The pressure propagation velocity in the pipeline is', '\n', \
|
|
||||||
self.c, self.velocity_unit)
|
|
||||||
|
|
||||||
def get_number_of_timesteps(self):
|
# :<10 pads the self.value to be 10 characters wide
|
||||||
print(self.nt, 'timesteps are performed in the simulation')
|
print_str = (f"The pipeline has the following attributes: {new_line}"
|
||||||
|
f"----------------------------- {new_line}"
|
||||||
|
f"Length = {self.length:<10} {self.length_unit_print} {new_line}"
|
||||||
|
f"Diameter = {self.dia:<10} {self.length_unit_print} {new_line}"
|
||||||
|
f"Number of segemnts = {self.n_seg:<10} {new_line}"
|
||||||
|
f"Number of nodes = {self.n_seg+1:<10} {new_line}"
|
||||||
|
f"Length per segment = {self.dx:<10} {self.length_unit_print} {new_line}"
|
||||||
|
f"Pipeline angle = {self.angle:<10} {self.angle_unit_print} {new_line}"
|
||||||
|
f"Darcy friction factor = {self.f_D:<10} {new_line}"
|
||||||
|
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
|
||||||
|
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_print} {new_line}"
|
||||||
|
f"Simulation timesteps = {self.dt:<10} {self.time_unit_print } {new_line}"
|
||||||
|
f"Number of timesteps = {self.nt:<10} {new_line}"
|
||||||
|
f"----------------------------- {new_line}"
|
||||||
|
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
|
||||||
|
|
||||||
|
print(print_str)
|
||||||
def get_initial_pressure(self,target_unit='bar'):
|
|
||||||
print('The inital pressure distribution in is', '\n', \
|
|
||||||
pressure_conversion(self.p0,self.pressure_unit,target_unit))
|
|
||||||
|
|
||||||
def get_initial_flow_velocity(self):
|
|
||||||
print('The inital velocity distribution is', '\n', \
|
|
||||||
self.v0, self.velocity_unit)
|
|
||||||
|
|
||||||
def get_boundary_conditions_next_timestep(self,target_unit_pressure ='bar'):
|
def get_boundary_conditions_next_timestep(self,target_unit_pressure ='bar'):
|
||||||
print('The pressure at the reservoir for the next timestep is', '\n', \
|
print('The pressure at the reservoir for the next timestep is', '\n', \
|
||||||
pressure_conversion(self.p_boundary_res,self.pressure_unit,target_unit_pressure), '\n', \
|
pressure_conversion(self.p_boundary_res,self.pressure_unit_print,target_unit_pressure), '\n', \
|
||||||
'The velocity at the reservoir for the next timestep is', '\n', \
|
'The velocity at the reservoir for the next timestep is', '\n', \
|
||||||
self.v_boundary_res, self.velocity_unit, '\n', \
|
self.v_boundary_res, self.velocity_unit, '\n', \
|
||||||
'The pressure at the turbine for the next timestep is', '\n', \
|
'The pressure at the turbine for the next timestep is', '\n', \
|
||||||
pressure_conversion(self.p_boundary_tur,self.pressure_unit,target_unit_pressure), '\n', \
|
pressure_conversion(self.p_boundary_tur,self.pressure_unit_print,target_unit_pressure), '\n', \
|
||||||
'The velocity at the turbine for the next timestep is', '\n', \
|
'The velocity at the turbine for the next timestep is', '\n', \
|
||||||
self.v_boundary_tur, self.velocity_unit)
|
self.v_boundary_tur, self.velocity_unit)
|
||||||
|
|
||||||
@@ -149,14 +150,14 @@ class Druckrohrleitung_class:
|
|||||||
D = self.dia
|
D = self.dia
|
||||||
|
|
||||||
for i in range(1,nn-1):
|
for i in range(1,nn-1):
|
||||||
self.v_new[i] = 0.5*(self.v_old[i-1]+self.v_old[i+1])+0.5/(rho*c)*(self.p_old[i-1]-self.p_old[i+1]) \
|
self.v[i] = 0.5*(self.v_old[i-1]+self.v_old[i+1])+0.5/(rho*c)*(self.p_old[i-1]-self.p_old[i+1]) \
|
||||||
-f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]+abs(self.v_old[i+1])*self.v_old[i+1])
|
-f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]+abs(self.v_old[i+1])*self.v_old[i+1])
|
||||||
|
|
||||||
self.p_new[i] = 0.5*rho*c*(self.v_old[i-1]-self.v_old[i+1])+0.5*(self.p_old[i-1]+self.p_old[i+1]) \
|
self.p[i] = 0.5*rho*c*(self.v_old[i-1]-self.v_old[i+1])+0.5*(self.p_old[i-1]+self.p_old[i+1]) \
|
||||||
-rho*c*f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]-abs(self.v_old[i+1])*self.v_old[i+1])
|
-rho*c*f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]-abs(self.v_old[i+1])*self.v_old[i+1])
|
||||||
|
|
||||||
self.p_old = self.p_new.copy()
|
self.p_old = self.p.copy()
|
||||||
self.v_old = self.v_new.copy()
|
self.v_old = self.v.copy()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 5,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -21,7 +21,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -105,7 +105,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -133,7 +133,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": 8,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -171,15 +171,15 @@
|
|||||||
"for it in range(1,pipe.nt):\n",
|
"for it in range(1,pipe.nt):\n",
|
||||||
" pipe.set_boundary_conditions_next_timestep(v_1[it],p_1[it],v_np1[it])\n",
|
" pipe.set_boundary_conditions_next_timestep(v_1[it],p_1[it],v_np1[it])\n",
|
||||||
" pipe.timestep_characteristic_method()\n",
|
" pipe.timestep_characteristic_method()\n",
|
||||||
" lo_00.set_ydata(pipe.p_new)\n",
|
" lo_00.set_ydata(pipe.p)\n",
|
||||||
" lo_01.set_ydata(pipe.v_new)\n",
|
" lo_01.set_ydata(pipe.v)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # store parameters of node 1 (at reservoir)\n",
|
" # store parameters of node 1 (at reservoir)\n",
|
||||||
" pipe.p_1[it] = pipe.p_new[0]\n",
|
" pipe.p_1[it] = pipe.p[0]\n",
|
||||||
" pipe.v_1[it] = pipe.v_new[0]\n",
|
" pipe.v_1[it] = pipe.v[0]\n",
|
||||||
" # store parameters of node N+1 (at reservoir)\n",
|
" # store parameters of node N+1 (at reservoir)\n",
|
||||||
" pipe.p_np1[it] = pipe.p_new[-1]\n",
|
" pipe.p_np1[it] = pipe.p[-1]\n",
|
||||||
" pipe.v_np1[it] = pipe.v_new[-1]\n",
|
" pipe.v_np1[it] = pipe.v[-1]\n",
|
||||||
" \n",
|
" \n",
|
||||||
" fig2.suptitle(str(it))\n",
|
" fig2.suptitle(str(it))\n",
|
||||||
" fig2.canvas.draw()\n",
|
" fig2.canvas.draw()\n",
|
||||||
@@ -189,7 +189,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 6,
|
"execution_count": 9,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
|||||||
Reference in New Issue
Block a user